Э.М. Спиридонов (МГУ)

Минералогия золота

плутоногенных

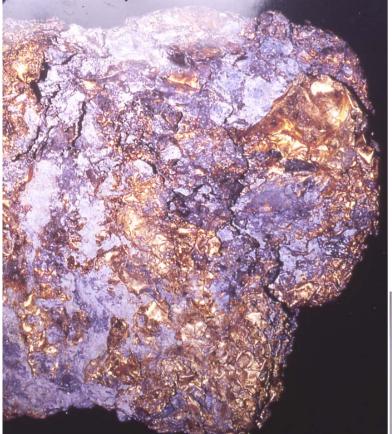
Au и Au-содержащих месторождений

Крупнейшие исторические самородки золота

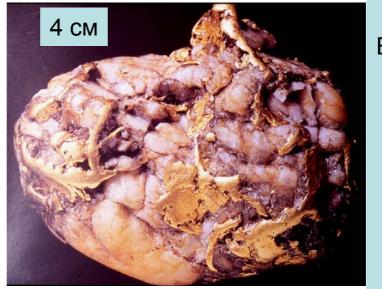
2500 кг - м-ние Зарубан, Афганистан (по Аль Бируни)

960 кг - м-ние Ейле, Чехия (найден в 742 г.)

286 кг - 140x66x10 см – Австралия


193 кг - Бразилия

153 кг - Чили


36 кг - Россия

Знаменитая золотая плита Холтермана

Часть крупного самородка – «золотой плиты» длиной 62 см. Jameston, Sonora, Калифорния

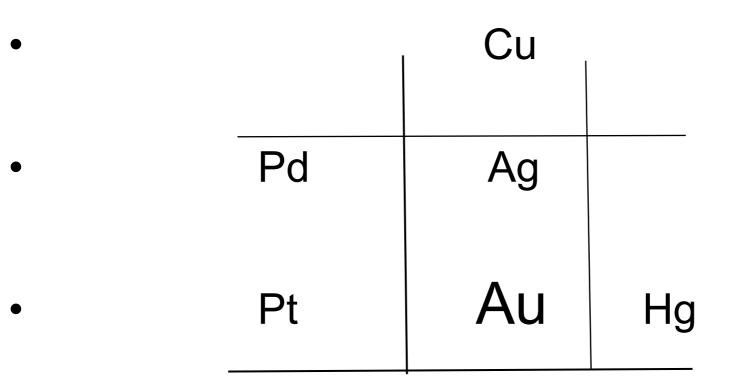
Самородок.
Высокопробное золото заместило анкерит в промежутках между кристаллами кварца.
Клондайк

Крупнейший самородок России, добытый за последние десятилетия. 19 x 12 x 9 см. Вес 9.6 кг. Из них золота 7.7 кг. Якутия.

Типы золотой минерализации

Пневматолитовая:

- 1а. в отложениях вулканических эксгаляций,
- 1б. в магматических сульфидных залежах.


Гидротермальная:

- 2a. плутоногенные формации **золото - кварцевая березит лиственитовая**, медно порфировая, гумбеитовая;
- 2б. вулканогенные формации золото серебро колчеданная, золото серебряная эпитермальная, барит полиметаллическая, карлинского типа;
- 2в. телетермальные формации золото -сурьмяная, золото ртутная, золото-селеновая (обособленная или в составе пятиметальной U-Ag-Bi-Ni-Co формации).

Гипергенная

Метаморфогенная

Позиция золота

Генеральный тренд в ходе гидротермального рудообразования

• Au \longrightarrow Au,Ag (Hg) \longrightarrow Ag,Au (Hg) \longrightarrow Ag (Hg)

САМОРОДНОЕ ЗОЛОТО -

МИНЕРАЛЫ СИСТЕМ

Au - Ag, Au - Ag - Hg, Au - Cu (Pt-Pd), Au - Pd

Размерность

Самородки >1 Γ = >4x4x4;>5x5x2;>10x10x0.5мм

Крупные золотины более 5 мм

Средние 1 - 5 мм

Мелкие 0.1 - 1 мм

Тонкие 0.01 - 0.1 мм (>10 микрон)

Ультратонкие менее 0.01 мм (< 10 микрон)

Коллоидное менее 0.0001 мм (< 0.1 микрон)

30ЛОТО

Самородное золото – минералы системы Au - Ag непрерывная серия кубических твёрдых растворов

Главные характеристики:

пробность - Au / Au+Ag (масс.,%) в ‰ зональность или однородность состава форма и размер выделений размер кристаллов золота в его агрегатах

Пробность: 1000 – 700 - золото

700 - 300 - электрум

300 - 100 - кюстелит

100 - 0 - (Аи)-серебро

Плутоногенная

гидротермальная

медно-порфировая

С ЗОЛОТОМ

формация

Медно-порфировая формация включает до 80 % мировых запасов меди, ряд ей месторождений содержит существенные количества Au и Ag. Формация сопряжена с плутоническими и вулкано-плутоническими поясами складчатых областей. Генетически формация связана с малыми интрузивами гранитоид-порфиров гранодиоритовых, монцонитовых и реже гранитных комплексов. Её суть передаёт буквальный перевод названия формации с английского "porphyry copper" – "медь в порфирах". Меденосные штокверки и обрамляющие их сверху рудные жилы размещены в телах гранитоид-порфиров (и в их экзоконтактах) и сопутствующих телах взрывных пневмато-гидротермальных брекчий в ореолах калиевых пропилитов, кварц-серицитовых и близкого типа метасоматитов. К вопросу о длительности формирования рудоносных медно-порфировых систем – известны гигантские медно-порфировые месторождения с полным циклом развития, изотопный возраст которых менее 1.5 млн. лет. Содержания золота в медных рудах обычно низкие – от сотых до

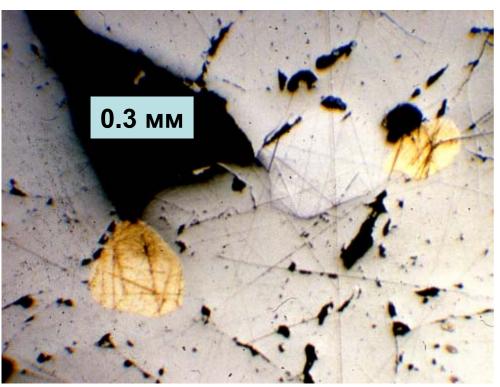
Содержания золота в медных рудах обычно низкие – от сотых до первых десятых г/т, изредка до 1 г/т и более. Благодаря огромным запасам руд, ресурсы Аи значительные. Наиболее золотоносны бедные Мо медно-порфировые месторождения энсиматических островных дуг. Типичная величина Ag/Au от 10 до 500 и более, чаще 60-80-100. По этому признаку медно-порфировая минерализация резко отлична от плутоногенной золото-кварцевой, жилы которой нередко секут медно-порфировые штокверки.

Существенно медные руды верхних горизонтов некоторых меднопорфировых месторождений содержат десятки г/т золота. Такие руды обычно содержат также палладий и платину с соотношениями

Ag:Au:Pd:Pt ~ **100-10:1:0,1:0,01**. В таких рудах в ассоциации с электрумом, алтаитом, креннеритом, петцитом, сильванитом развиты висмутотеллуриды палладия и платины: меренскиит PdTe2 — PdTeBi, майчнерит PdTeBi, котульскит Pd(Te, Bi), мончеит PtTe2 — PtTeBi, а также сперрилит Pt As2.

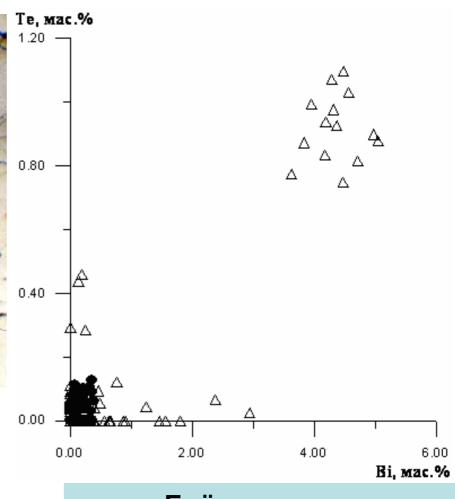
В последнее время по аналогии с медно-порфировыми выделяют так называемые золото-порфировые штокверковые месторождения. Аналогия в данном случае не корректна, поскольку эти объекты генетичес ки, а часто и пространственно не связаны с телами гранитоид-порфиров, в отличие от медно-порфировых. Типичный пример "золото- порфировых" объектов, который как таковой описан в ряде работ, - месторождение Рябиновое на Алданском щите [Ли Гуан Мин, 1995...]. Основная золото рудная залежь этого штокверкового месторождения размещена в сиенитах с размером кристаллов до 1 м. Очевидно, что пегматоидные сиениты не имеют отношения к порфирам.

Представляется, что термин "золото-порфировые месторождения" излишен.

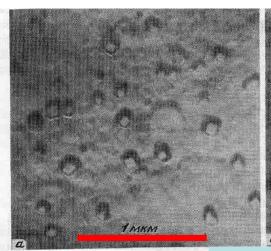

Плутоногенная

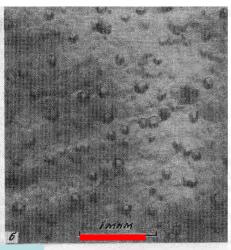
золотосодержащая

гумбеитовая


формация

Плутоногенная золотосодержащая гумбеитовая формация


Те-Ві-тетраэдрит + золото + тетрадимит. Шарташ, Урал


Фотография в отражённом свете

Блёклые руды гумбеитовой (треугольники) и березитовой (залитые) формаций

О магнитном «самородном золоте»

1	d, Å	hkl золота	hkl магнетита	I/I_1 магнетита	
4	4,85	-	111	27	
9	2,967	-	220	60	
15	2,530		311	100	
100	2,357	111	-	-	
8	2,098	_	400	53	
63	2,041	200	-		
5	1,713		422	33	
11	1,615		333	73	
13	1,484		440	87	
58	1,441	220			
85	1,230	311		-	
28	1,1785	222	211	-	
6	1,0926		731, 553	40	
ao, A		4,080 ± 0,002		8,393 ± 0,002	

 Π р и м е ч а н и е. Условия съемки: образец — тонкорасплющенная пластинка; дифрактометр ДРОН-1,5; Со-антикатод, Fe-фильтр; 1 см на диаграмме равен 0,5 $^{\circ}$ 2 θ ; внутренний эталон — гер-

в матрице самородного серебрист маний; аналитик Э.М. Спиридонов.

Рис. 1. Октаэдрические кристаллы магн золота. Фото И.А. Пономаревой

1 мкм

ости, мас. %											
Частота встречаемости, мас. % 01								TOR STILL			
0		97	6) 6 (3) 8	1		1	Ľ	1	ı		

Компонент	Весовой анализ [3] 78,24	Электронно-зондовый анализ							
		рядовые участки			микроу	частки, богатые железо			
Au		76,91	77,09	77,39	73,62	73,99	73,23		
Ag	17,33	17,09	16,59	16,38	15,89	15,68	16,08		
Fe	4,40	4,31	4,43	4,20	7,62	7,27	8,05		
Cu	-	0,09	0,09	0,08	0,03	100	0,04		
Mn	S	0,01	0,00	0,01	0,02	0,02	0,03		
Сумма	99,97	98,41	98,20	98,06	97,18	96,96	97,43		

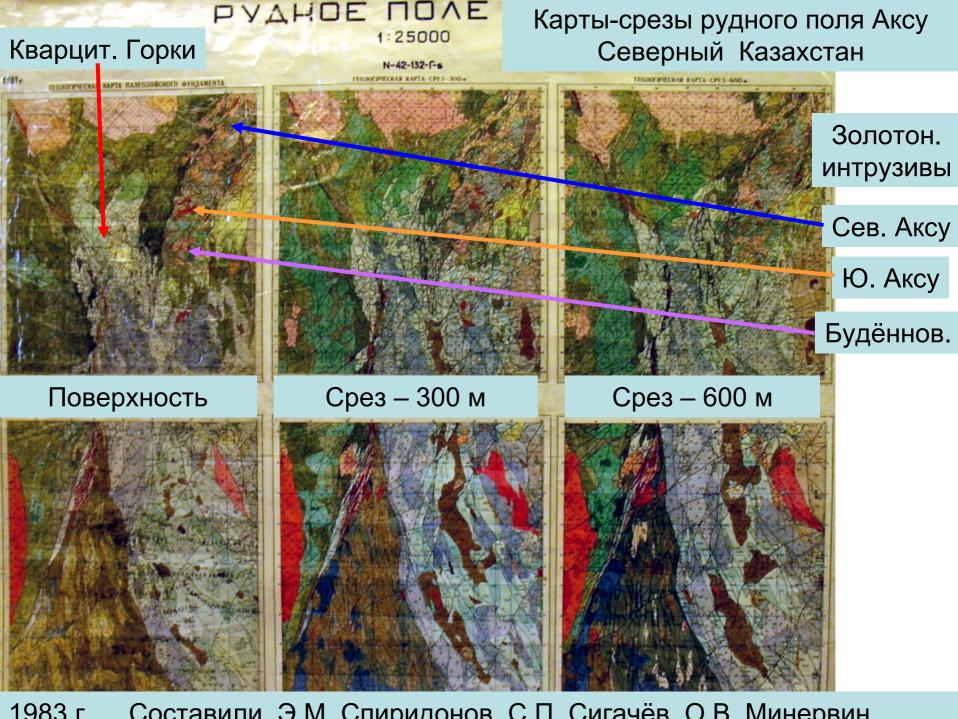
Примечание. Микрозонд "Сатевах", ускоряющее напряжение 25 кВ, сила тока 15 нА эталоны: химически внализированные высокопробное золото (Au), гессит (Ag), магнетит (Fe) чистые металлы — медь (Cu), железо (Fe), марганец (Mn). Pt, Pd, Pb, Hg, Sb, Ni, Co не обнаружены. Аналитик Э.М. Спиридонов.

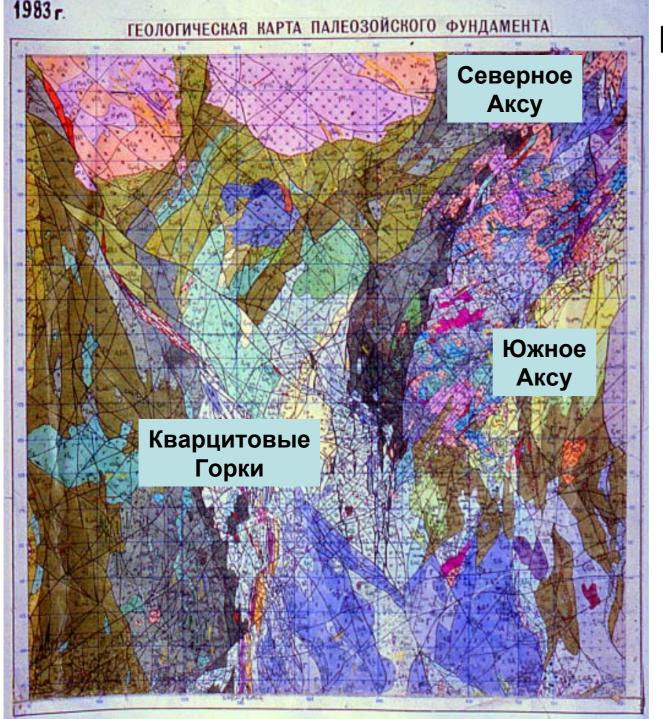
Рис. 2. Гистограмма размеров включений магнетита в "магнитном" самородном золоте (часта встречаемости по классам крупности). По данным измерений 887 зерен магнетита

Магнитное «самородное золото»

- матрица серебристого золота с массой кристалликов магнетита

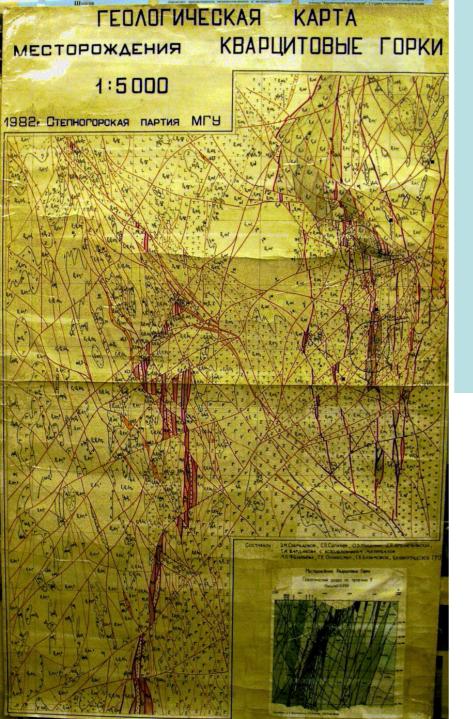
Плутоногенная золото-кварцевая березит-лиственитовая формация главная золоторудная главная россыпеобразующая


Плутоногенные месторождения золото-кварцевой формации сопряжены с тоналит-гранодиорит-адамеллитовыми и монцонит-граносиенит-гранитными комплексами складчатых областей. Эти месторождения формируются в условиях закрытой системы, т.е. при повышенном давлении (Р). Величина Р определялась положением верхней кромки гидротермальной системы, расположенной как правило близ верхней кромки интрузивов или несколько выше. Самые низкие оценки Р по ГЖВ в ранней генерации кварца и карбоната руд - 0,3-0,6 кб [Спиридонов, 1995; Trumbull et al., 1996...], что отвечает минимальным глубинам формирования ~1-1.5 км. Максимальные оценки до 3,5-4 кб (~12-15 км) [Спиридонов, 1995; Hagemann, Brown, 1996; Mishra, Panighari, 1999; Jia, Kerrich, 2000...]. Типична большая протяжённость золотого оруденения по вертикали: 3,5 км, с учётом эрозионного среза около 5 км (Колар, Индия); около 3 км -Морро-Велью (Бразилия); около 2,5 км – Ашанти (Гана), около 2 км – десятки м-ний Канады, Африки, Австралии...

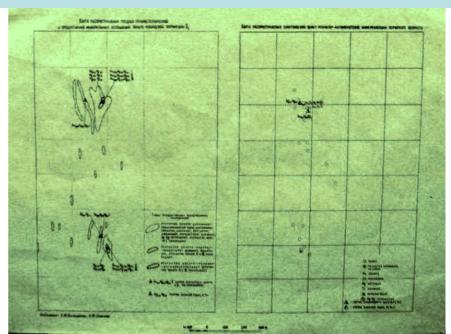

СИНИНВЕРСИОННЫЙ ПОЗДНЕОРДОВИКСКИЙ КРЫККУДУКСКИЙ ИНТРУЗИВНЫЙ КОМПЛЕКС ГОРНЫЕ ПОРОДЫ, РУДНЫЕ И МЕТАСОМАТИЧЕСКИЕ ОБРАЗОВАНИЯ интрузивные и ПЕТРОХИМИЧЕСКИЕ ТИПЫ AAUKOB DIE OSPASOBAHUS BOSPACT PARTIER MAH. AET CTPAHE СУЩЕСТВЕННО НАТРИЕВЫЙ KAAHERO - HATPHEBBIH /патщади распространения/ кварцевые диабазы, диабазовые порфириты, габбро диабазы варуевые таков порфириты приниментинатический саминими сургиний минецомульный продуктивная золото-сульфидная или золото-техлуридная минерализация кварцевые диорит-порфириты, гранодиорит-порфириты, порфировидные спессортиты / внутрирудные, кворцевые жилы с пиритом, шеслитом, пирротином, арсенопиритом листвениты - Березиты порфировидные спесартиты, налгиты, кварцевые габбро-диорит - порфириты СПЕССАРТИТЫ. 450-465 ++ происхождения варывные (газо-гидротермальные) брекчии /~ 1%/ кварцевые диорит -порфириты, гранодиорит-порфириты, кузелиты, диорит-порфириты H METACOMATHTH афировые спессартиты, брекчиевидные спессартиты, меланоспессартиты, микродиориты березиты с Си-Мо-порфировым оруденением калиевые пропилиты с путпеляцитот TOORURUMS C THE TERRULMOM взрывные (газо-гидротермальные) брежчиц гранодиорит-порфириты, тонахит-порфириты, кварцевые диорит-порфириты высокотенпературные кварцевые жилы, в том числе с молибденитом плагиогранит-и гранит- порфиры адамеллит-и гранит-порфира METACOMATHUECKHE известновые скарны, гидро силикатные скарны с нагнетитон, халькопиритон, кобальтинон, шеслитон, толибденитон плагиодплиты, дплиты, граниты жильные порфировидные плагиограни ГЛАВНАЯ ADDDAHUTEANHNE 460 **ИНТРУЗИВЫ** ration - u dupoutonodothue nopodu, murmamumi KOHTAKTOBO- HETACO роговики, амфибанто- и гнейсо- роговики, экзо- и эндоскарны пагнезиальные и известновые скарны с нагнетитом, пирротином, халькопирита METACOMATHHECKH ГЛАВНАЯ PRINCIN, PROMODURANTA, GRAUMA, REPROTUTA ИНТРУЗИВНАЯ РАЦИЯ 445-450 PA3A +++ габбро - и диоритоподобные породы, мигматить роговики, скарноиды, анфиболито-роговики, экзо- и эндоскарны кварцевые лабрадориты и годбро-лабрадориты РАННЯЯ ортоклаз-кворцевые и кворцевые лейкогоборо оргоклаз-кворцевые гоборо и гоборе клариты, гоборо-дориты, лейко-кориты, кворт-диротът, гоборо-кориторить кворт-диротът, гоборо-кориторить РАННЯЯ ГАЛВНАЯ ИНТРУЗИВкварцевые лейкогаббро-нариты и габбродиориты, габбро-лабрадориты +++ габбро - и диорито по вобные породы, мигматиты роговики, скарноиды, амфиболито-роговики, экзоскарны ПЕТРОХИМИЧЕСКАЯ ДИАГРАММА (по А.Н. Заварицкому) НЕКОТОРЫЕ ГЕОХИМИЧЕСКИЕ ПАРАМЕТРЫ интрузивных пород оозднеордовикского (крыккудукского) комплекса ГРАНИТОНАОВ КРЫККУДУКСКОГО КОМПЛЕКСА ПЕТРОХИМИЧЕСКИЕ ТИПЫ ГРАНИТОНДОВ K/RE Na/K Na/K 375 1,4 315 1.8 2,4 425 520 1.0 I PASA 2,4 410 1,6 310 2,1 440 1.4 10000 U/M U, r/r 10000 U/K V,r/r 10000 U/K V, r/T 0,68 0,25 0,59 0,65 0,75 0,98 2,7 I PASA 0,90 0,75 1,00 Cu, r/T COAEPKAHUR 62 I PASA 27 I PASA 17 Au, mr/r 6 (2-12) 6(2-20) 8 (3-25) PAHHES PASA B PASA

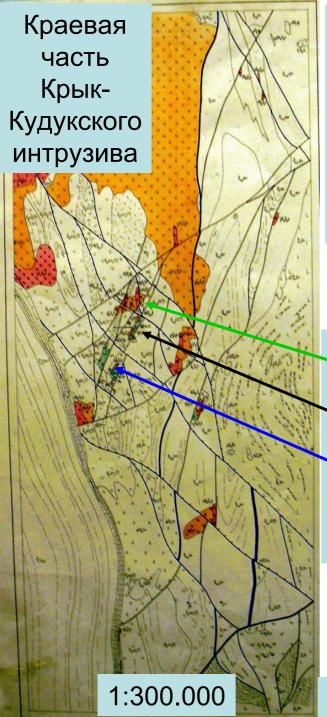
Золотоносный степнякиттоналитгранодиоритовый комплеск каледонид Северного Казахстана

Каледонская Северо-Казахстанская золоторудная провинция



Геологическая карта рудного поля Аксу, Северный Казахстан.


1:25.000


Авторы:
Э.М. Спиридонов,
О.В. Минервин,
С.П. Сигачёв,
В.И. Борисёнок,
Д.Н. Архангельский,
Т.Н.Демент

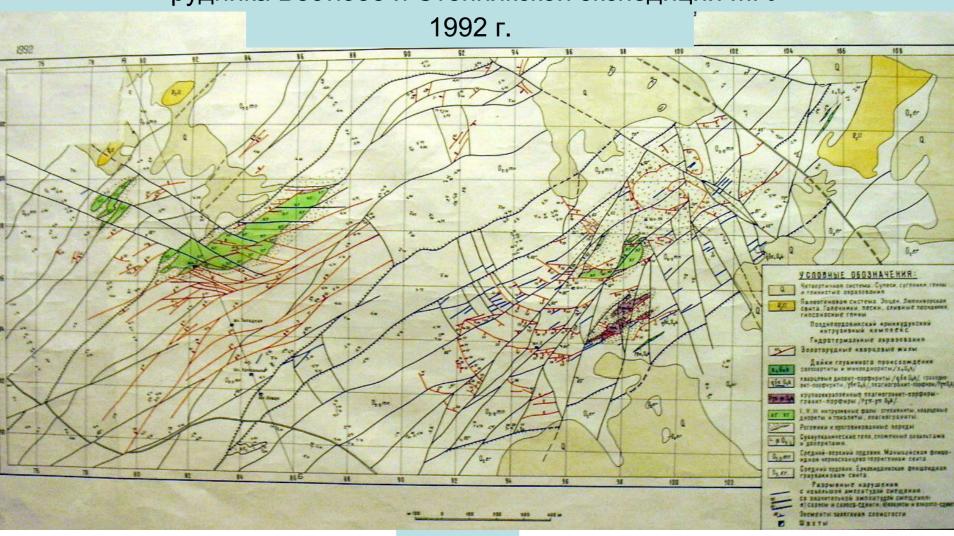
Геологическая карта месторождения Кварцитовые Горки. Северный Казахстан

1982 г.
Составили:
Э.М. Спиридонов
О.В. Минервин
С.П. Сигачёв
Н.Ф. Соколова

Рудное поле Джеламбет. Северный Казахстан

Золотоносные интрузивы

Джеламбет-север


Джеламбет-Центр

Джеламбет-Юг

1991 г. Э.М. Спиридонов

Геологическая карта рудного поля Бестюбе. Север Казахстан

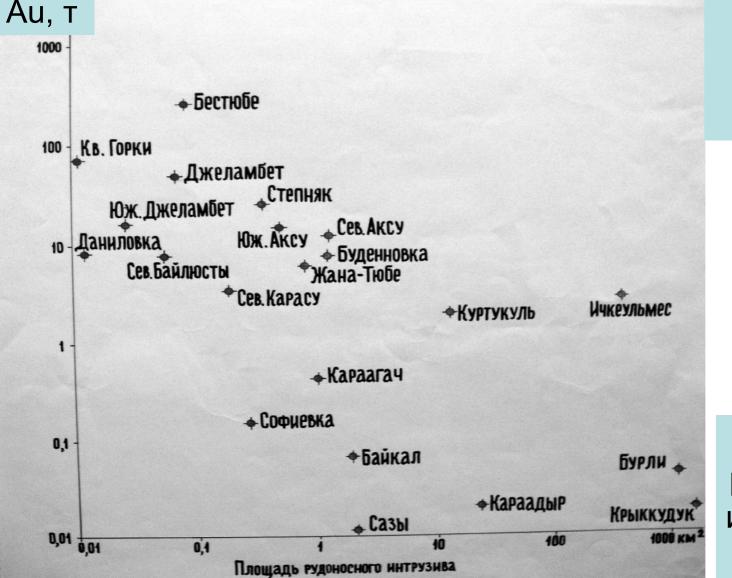
Составил Э.М. Спиридонов по материалам Целиноградской ГРЭ, ГРО рудника Бестюбе и Степнякской экспедиции МГУ

ГЕОЛОГИЧЕСКИЙ РАЗРЕЗ ЗАПАДНО-БЕСТЮ БИНСКОГО ИНТРУЗИВА Масштаб 1:1000 Западная Капитальная Новая-Глубокая mad 0 40 40 40 m шх. Вентиляционная 02.3 mn 0, mn N Oz-1 mn Cosmolus Empulsued SM c grasmusen Banuela HA a Dunamouda 10 A so managassam 170 pjenna lesmolo Compilosola SM, Manaela 100, Dunamouda 10 A. 745 M Sanuerda M.A.

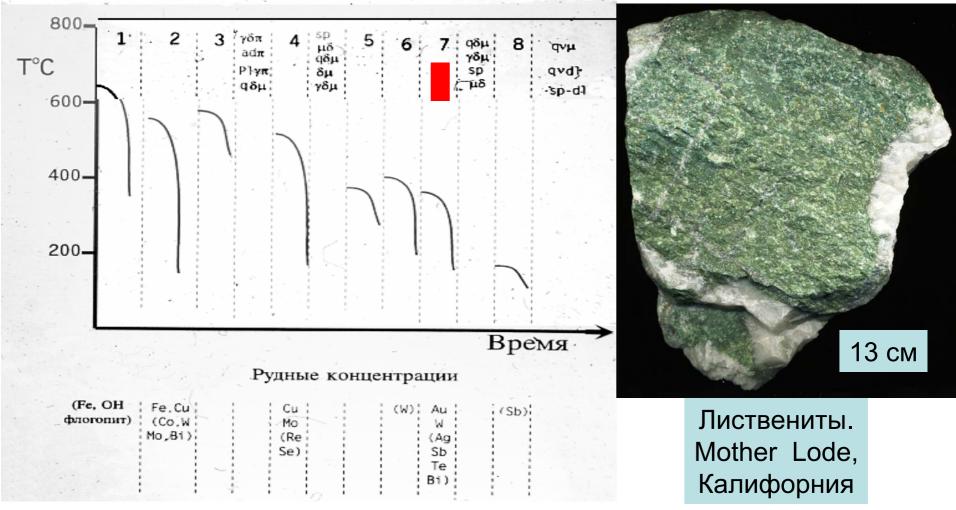
Важнейшая в Центральном Казахстане раннекаледонская провинция включает месторождения Васильковское (700 т Au), Бестюбе (450 т), Джеламбет (250 т), Кварцитовые Горки (150 т), Аксу (150 т), Степняк (50 т). Уральская герцинская провинция включает Берёзовское (450 т) и Кочкарское (400 т). Те и другие парагенетически связаны с инверсионной степнякит-тоналит-гранодиоритовой формацией (ТГФ), которая завершает островодужный этап развития складчатой области. Это О3 (445±5 Ma) крыккудукский комплекс Степнякского мегасинклинория (прогиба) и зерендинский комплекс Кокчетавского антиклинория (срединного массива, микроконтинента) и С1 шарташский и пластовский комплексы Урала. Au оруденение порождено процессами среднетемпературного (370-310 град.) углекислого метасоматоза березитизации-лиственитизации, которые геологически одновозрастны наиболее поздним дайкам глубинного происхождения - гранитоидпорфирам и/или спессартитам. Золотоносность руд определяется развитием продуктивной минеральной ассоциации, Т её образования 210-150, обычно 190-170 град. Это объясняет то, что месторождения Аи тяготеют к одновозрастным малым интрузивам и дайкам и только к краевым частям более крупных интрузивов, так как те и другие успевают остыть до нужной Т, иначе золото рассеивается!

Главные месторождения золота Северного Казахстана приурочены к мелким интрузивам типа Степнякского, которые Ю.А.Билибин (1945, 1959) выделил в степнякский комплекс - послебатолитовую формацию золотоносных малых диоритовых интрузивов, более молодых, чем тоналит-гранодиоритовая формация — ОЗ крыккудукский интрузивный комплекс. Сейчас доказано, что золотоносны в той или степени все типы интрузивов тоналитгранодиоритовой формации, что к её производным принадлежат и интрузивы степнякского типа и главные месторождения Аи (Спиридонов, 1991,1995). Для малых золотоносных плутонов типоморфны тела ранней предбатолитовой (предтоналитовой) интрузивной фазы, сложенные кварцевыми биотит-роговообманковыми лейкогаббро-норитами - степнякитами. Эти тела фиксируют глубоко проникающие разломы, в дальнейшем обычно рудоподводящие.

В целом – обратная корреляция размер интрузива – запасы Аи месторождения, которое к нему приурочено.


ЗОЛОТОНОСНЫЙ СТЕПНЯКИТ--ТОНАЛИТ-ГРАНОДИОРИТОВЫЙ КРЫККУДУКСКИЙ КОМПЛЕКС

каледониды

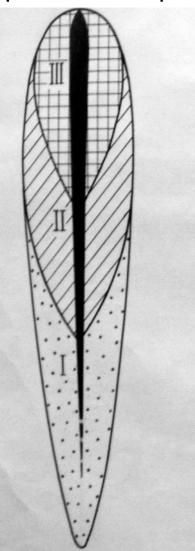

Казахстана

Площадь рудоносных интрузивов, км²

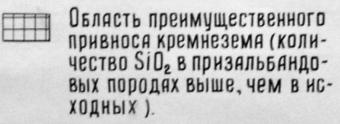
- Дозолоторудные и внутрирудные послегранитоидные дайки глубинного происхождения - родственные. Разнообразные гранодиорит-, плагиогранит-, адамеллитпорфиры, тоналит- и диорит-порфириты, микродиориты, кварцевые габбро-диорит-порфириты, слагающие дайки многих поколений в интрузивах тоналит-гранодиоритовой формации и в породах их рамы, по изотопному возрасту и составу отвечают интрузивным породам трёх фаз тоналитгранодиоритовой формации. Очевидно это выжимки остаточных магматических очагов.
- Дозолоторудные и внутрирудные послегранитоидные дайки глубинного происхождения петрологически чужеродные. Среди поздних поколений даек глубинного происхождения довольно многочисленны спессартиты афировые и чаще порфировидные, нередки меланоспессартиты. По геологическим соотношениям и изотопному возрасту они принадлежат ТГФ. Однако, петро- и геохимически спессартиты резко отличны от производных ТГФ. В центре кристаллов роговой обманки в спессартитах содержатся хромшпинелиды и оливин. Судя по составу хромшпинелидов, эти спессартиты производные островодужных базальтоидных магм.

Золото-кварцевая березит-лиственитовая формация среди послеинтрузивных образований тоналит – гранодиоритовых комплексов

- 1 Mg скарны. 2 Са скарны. 3 кварц-турм. метасоматиты. 4 К пропилиты.
- 5 Na пропилиты. 6 гумбеиты. 7 березиты и листвениты. 8 аргиллизиты.

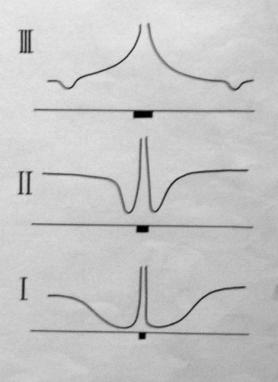

Послегранитоидные метасоматиты. Образования 1 этапа: магнезиальные скарны (Fe, флогопит) — известковые скарны→ гидросиликатные скарны (Fé, Cu, Co, W)→ кварцмусковитовые метасоматиты (псевдогрейзены) → кварцтурмалиновые метасоматиты. Образования 2 этапа: пропилиты K → кварц-серицитовые метасоматиты (Mo-Cuпорфировые концентрации)→ пропилиты Nа→ гумбеиты (W) → березиты-листвениты (Au, Ag, Te). Особый интерес представляют метасоматиты березит-лиственитовой формации, заместившие породы специфического состава, с пирофиллитом (по низкокалиевым аргиллитам и кварцкаолинитовым сланцам), с парагонитом (по низкокалиевым магматитам), березиты - микрокварциты (по фтанитам и яшмам), с бариево-калиевыми слюдами (по баритсодержащим глинистым яшмоидам), трёхкарбонатные (по магнезиально-скарновым кальцифирам). Около промышленных рудных тел на ранние березиты и листвениты наложены разнообразные рудосопровождающие метасоматиты, богатые карбонатами ± пирит ± арсенопирит ± альбит, или хлорит, или каолинит, или пирофиллит.

Золоторудные концентрации. Золото-кварцевая березит-лиственитовая формация представлена кварцевыми и карбонат-кварцевыми жилами, штокверками прожилков того же состава, оруденелыми березитизированными и лиственитизированными породами, в их числе известковые и магнезиальные скарны. Пучки рудных тел обычно и по латерали и в вертикальном распространении тесно связаны с интрузивными телами. Обратная зависимость между размерами рудоносных интрузивов и сопряжённых рудных концентраций свидетельствует о глубинном источнике рудного золота. Область рудогенеза находилась в интервале глубин ~ 1 - 12 км. Строение месторождений от простого (единичные жилы или линзовидные тела штокверков) до весьма сложного (многочисленные системы жил в сочетании с зонами штокверков и оруденелых метасоматитов). Более половины запасов сосредоточены в крупных (> 100 т) месторождениях. Запасы месторождений не коррелируются со сложностью их строения. Большинство месторождений не велики по латерали <2x2 км и протяжённые по вертикали до >2 км. Эмпирически установлена их приуроченность к участкам с мелкоблоковым рисунком строения интрузивов и складчатых структур рамы. Характерна слабо контрастная вертикальная минеральная и геохимическая зональность месторождений. Типоморфные минералы - высокопробное золото, сернистый арсенопирит, блёклые руды (без Te, Bi, Se), Pb-Sb сульфосоли, теллуриды Pb, Bi, Ni. Особую роль в переносе и отложении Аи сыграла углекислота. Основная причина рудоотложения гетерогенизация H2O-CO2 раствора и связывание CO2 в карбонатах березитов-лиственитов. Углеводороды и битумоиды, которые мигрировали в кварцевые жилы и метасоматиты, - геохимические барьеры для золота, в местах их скоплений возникли рудные столбы.


Обобщённая схема строения зон

березитизированных – лиственитизированных пород

Вертикальный разрез


Жильный кварц

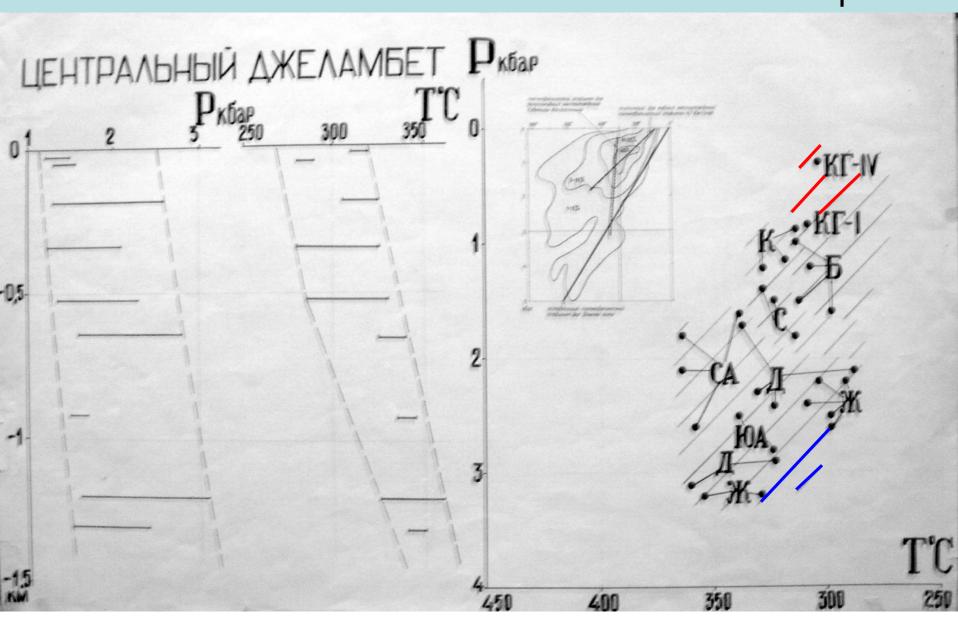
Промежуточная область (колнчество SiO₂, вынесенного нз околожильного ореола, примерно равно количеству SiO₂, отложенному в кварцевой жиле).

Область пренмущественного вынося кремнеземя (количество SiO_2 , вынесенного из околожильного ореоля, превышает количество SiO_2 , отложенного в кварцевой жиле).

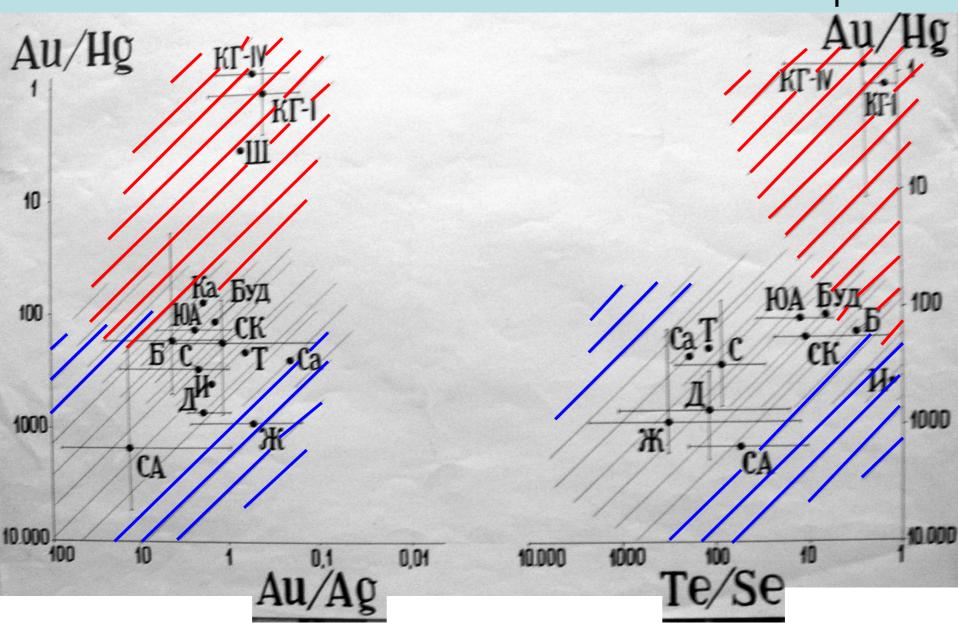
ТИПИЧНЫЕ КРИВЫЕ РАСПРЕДЕЛЕНИЯ SiO₂ В ОКОЛОЖИЛЬНЫХ ОРЕОЛАХ

Плутоногенные месторождения березит – лиственитовой золото – кварцевой формации

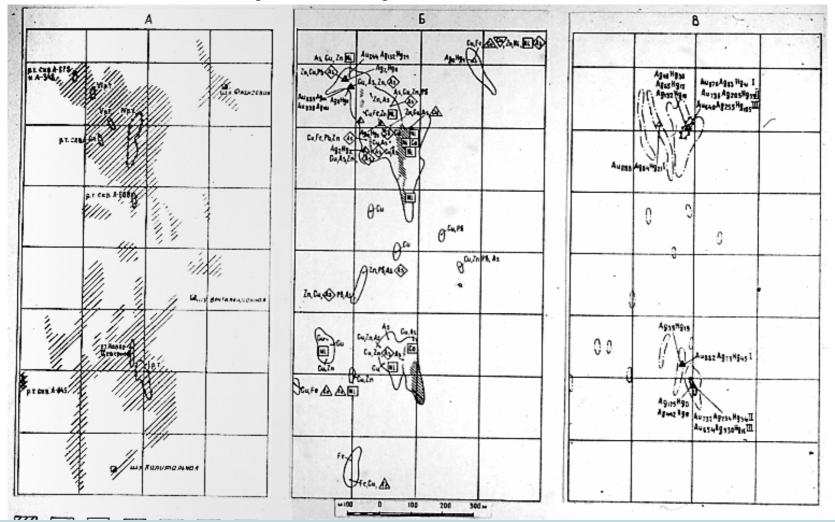
Минеральный состав руд обусловлен:


- 1. Фациями состава рудовмещающей среды (галенит в кремнекислой среде; пирротин и халькопирит в среде базитового состава; герсдорфит и полидимит среди ультрабазитов; обилие сульфидов и особо арсенопирита среди черносланцевых пород; дефицит сульфидов или их отсутствие в рудах среди крупных тел магматических пород..).
- 2. Фациями глубинности формирования месторождений (обилие минералов Sb только в гипабиссальных, минералов Те только в абиссальных...).
- 3. Типом рудоносных гранитоидов (Sb специализация тоналит-гранодиоритовых, Bi специализация монцонитовых интрузивных комплексов).

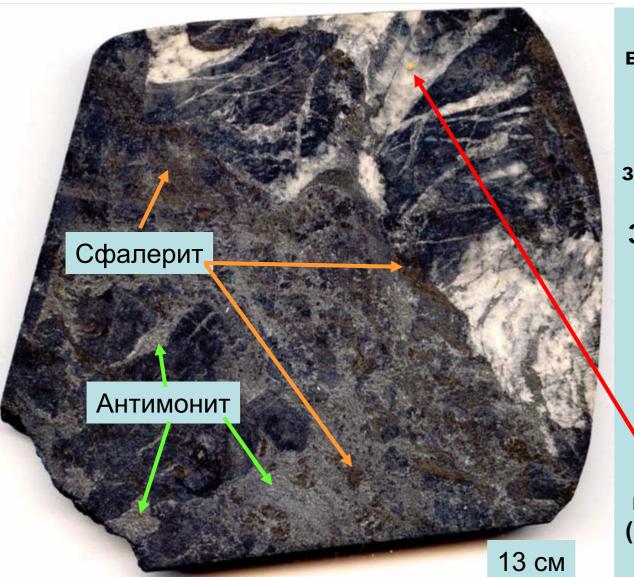
Месторождения возникли в относительно упорядоченных условиях закрытой системы, чем обусловлены устойчивый состав руд и рудных минералов по вертикали конкретных месторож дений и дифференциация рудного вещества по уровням глубинности формирования месторождений: с ростом глубинности в рудах уменьшается количество Sb, Hg, Tl, увеличивается Te, W, Au/Ag, Te/Se (от 1-2 до 100-3000), Au/Hg (от 1 до 200-8500).


Фациям глубинности интрузивов соответствуют фации глубинности и минеральные типы Au месторождений по составу продуктивной ассоциации: гипабиссальной (Р 0.3-1 кбар) - золото-серебросульфосольно-антимонитовый и золото-галенит-сульфоантимонидовый с ртутистым золотом и рощинитом; мезоабиссальной (Р 1-1.8 кбар) - золото-галенит-сульфоантимонидовый и золото-галенит-сульфоантимонидовый (Р 2-3.6 кбар) - золото-галенит-теллуридный и золото-теллуридный.

Руды месторождений, сопряжённых с интрузивами Na серии, бедны Bi (n г/т); сопряжённых с интрузивами K-Na серии, богаты Bi (до n1000 г/т).


ПАРАМЕТРЫ РУДООБРАЗОВАНИЯ КАЛЕДОНСКОЙ СЕВЕРО-КАЗАХСТАНСКОЙ **AU** ПРОВИНЦИИ

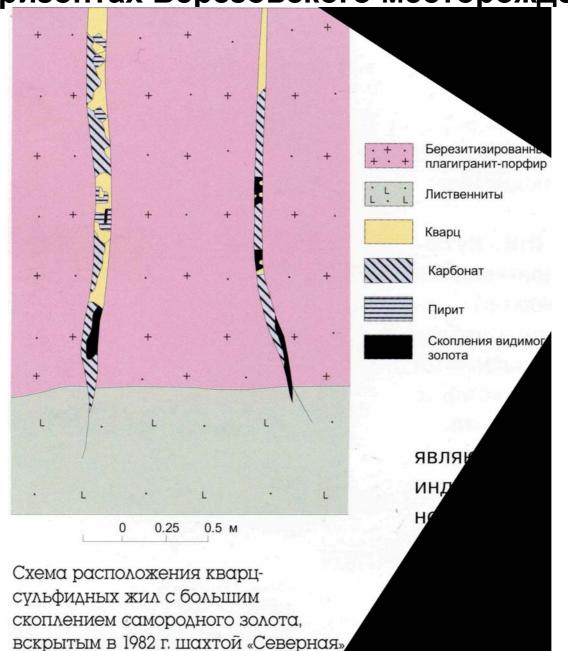
ЗОЛОТЫЕ РУДЫ КАЛЕДОНСКОЙ СЕВЕРО-КАЗАХСТАНСКОЙ **AU** ПРОВИНЦИИ


Штокверковое плутоногенное золото-антимонитовое месторождение Кварцитовые Горки, Северный Казахстан Карты минеральных ассоциаций

А- минеральные ассоциации березитов-лиственитов.

Б- карбонат-полисульфидные минеральные ассоциации.

В- продуктивная минеральная ассоциация.



Основные осадители = восстановители золота из гидротерм - углеводороды и графитоид. Т отложения золота обычно 170-190° С.

Золото-антимонитовое месторождение Кварцитовые Горки.

Антимонит в кальците чёрного цвета (с обилием органики) и в кальците белого цвета. Самородное золото в кальците белого цвета (органика «выгорела» при осаждении золота).

Позиция гнёзд крупного самородного золота на глубоких горизонтах Берёзовского месторождения

Шеелит ранней шеелит-кварцевой минеральной ассоциации плутоногенной березит-лиственитовой формации окрашен в красно-оранжевый цвет примесью ~ 0.5 % средних битумов

> 1000

< 10

CO₂ – один из главных компонентов золотоносных гидротерм

Карбонаты метасоматитов и рудных жил

Плутоногенная березит - лиственитовая золото-кварцевая формация

Гипабиссальная фация – сидерит, ферродоломит, доломит

Мезоабиссальная фация – доломит, кальцит

Абиссальная фация - кальцит

Общие особенности – низко марганцовистые: менее 10% минала $CaMn(CO_3)_2$ в доломите и ферродоломите, менее 10% минала $Mn(CO_3)$ в сидерите и кальците

Вулканогенные и телетермальные золоторудные формации от колчеданных до убогосульфидных

Кальцит, сидерит, родохрозит Mn(CO₃) с широкими вариациями состава, иногда со значительной примесью минала Zn(CO3)

Доломит, ферродоломит, кутнагорит $CaMn(CO_3)_2$ с широкими вариациями состава, иногда с заметной примесью минала $CaZn(CO_3)_2$

Карбонаты плутоногенных месторождений березит – лиственитовой – золото-кварцевой формации

Месторождения гипабиссальной фации

Березиты-листвениты

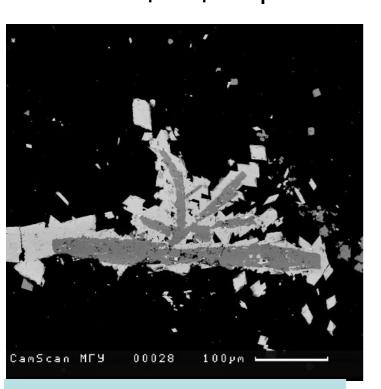
Сидерит, ферродоломит, доломит

Прямая вертикальная зональность – рост железистости по восстанию рудных тел.

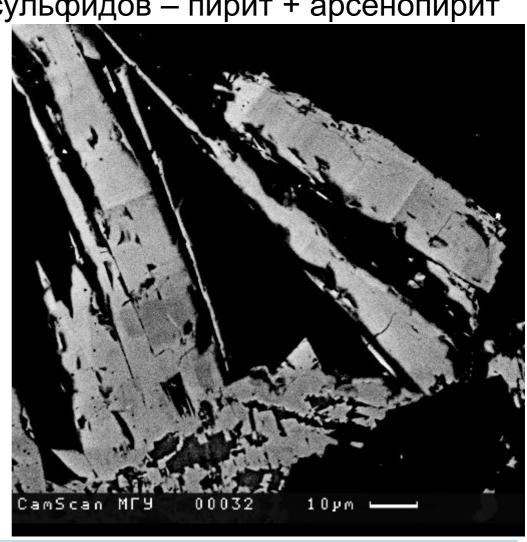
Причина - низкая а H2S

Карбонат-кварцевые жилы

Ферродоломит, доломит


Обратная вертикальная зональность — снижение железистости по восстанию рудных тел. Причина - высокая а H2S

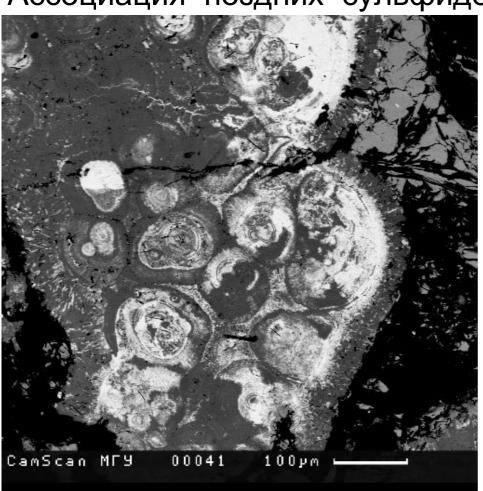
Марганцовистость и тех, и других возрастает по восстанию рудных тел, оставаясь в целом невысокой

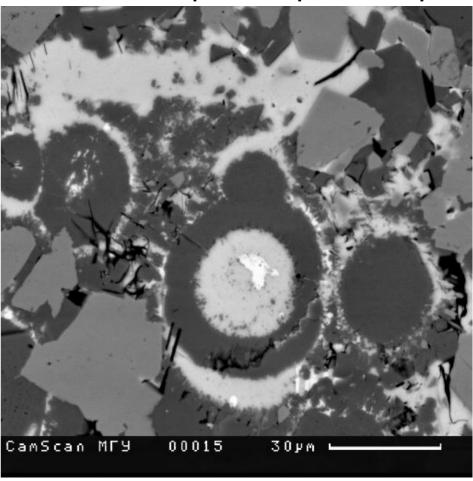

Гипабиссальная фация. Кварцитовые Горки-IV

BSE image

Ассоциация ранних сульфидов – пирит + арсенопирит

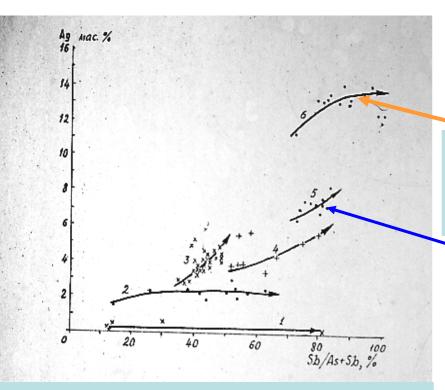
Листвениты с пластинами Sb-As-пирита (псевдом. по пирротину) с оторочками S-арсенопирита

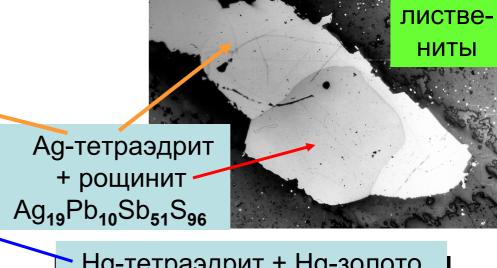

Арсенопирит с обратной зональностью


С. Каз. МИНЕРАЛЬНЫЕ ТИПЫ МЕСТОРОЖДЕНИЯ ПРОДУКТИВНОЙ АССОЦИАЦИИ LV 7 PNHHOCTN *30ЛОТО- АНТИМОНИТ-*KT-IV Серебросульфосольная Кварцитовые <2km Горки 30Лото-галенит-КГ-1 серебросульфосольная KM 30лото-галенит-Бестюбе Б СУЛЬФОАНТИМОНИДОВАЯ Буденновское Буд 30ЛОТО-галенит -Караул-Тюбе СУЛЬФОАНМИМОНИЙОВАЯ Степняк 5-/KM с теллуридами Восточ Джеламбет ВЛ Ичкеульмес Тускуль Жана-Тюбе золото-галенит-Северное Карасу СК теллчридная ДЮД Джеламбет Сазы Ca (золото-теллуридная) Северное Аксу СА ЮА Южное Аксу

Гипабиссальная фация. Кварцитовые Горки-IV

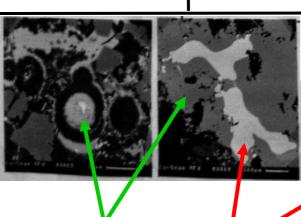
BSE image


Ассоциация поздних сульфидов – Sb-As-пирит + арсенопирит

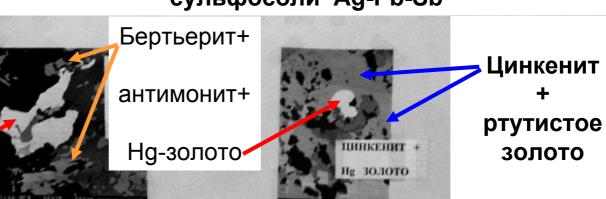


Сферолиты Sb-As-пирита и кристаллы S-арсенопирита, более поздние сфалерит и антимонит, менее джемсонит+цинкенит+халькостибит...

Блёклые руды гипабиссального плутоногенного месторождения Кварцитовые Горки-IV


Эволюция состава блёклых руд от первого до шестого зарождения в координатах: сурьмянистость — содержание серебра

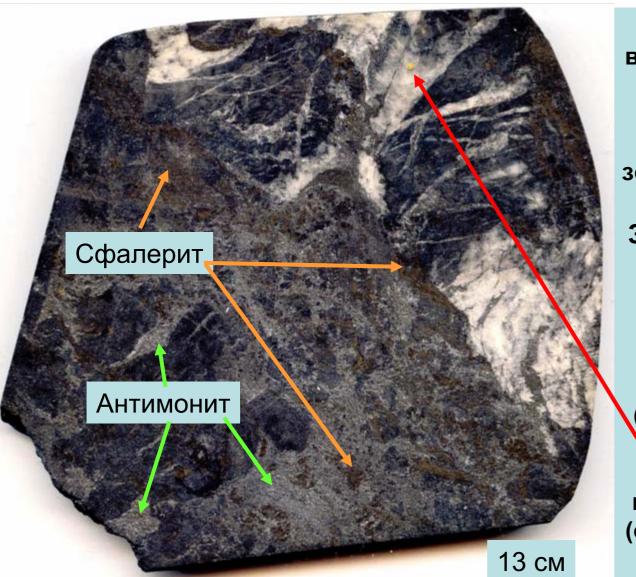
Продуктивная минеральная ассоциация гипабиссальных плутоногенных месторождений березит-лиственитовой формации – результат воздействия Au-Sb растворов на более ранние минеральные образования. Кварцитовые Горки. Северный Казахстан


Реакционно- способные ранние минералы	1	Пирро- тин FeS	Борнит Cu5FeS4	Халькопирит CuFeS2 + арсено- пирит FeAsS	Галенит PbS
Минералы – продукты реакций	Антимо- нит Sb2S3	Бертье- рит FeSb2S4	Халько- стибит CuSbS2	Блёклые руды – As-тетраэдрит Cu ₁₀ (Fe,Zn,Hg) ₂ (Sb,As) ₄ S ₁₃	Цинкенит Pb9 Sb22 S42

Антимонит -

ртутистое золото

+ самородное ртутистое золото + сульфосоли Ag-Pb-Sb

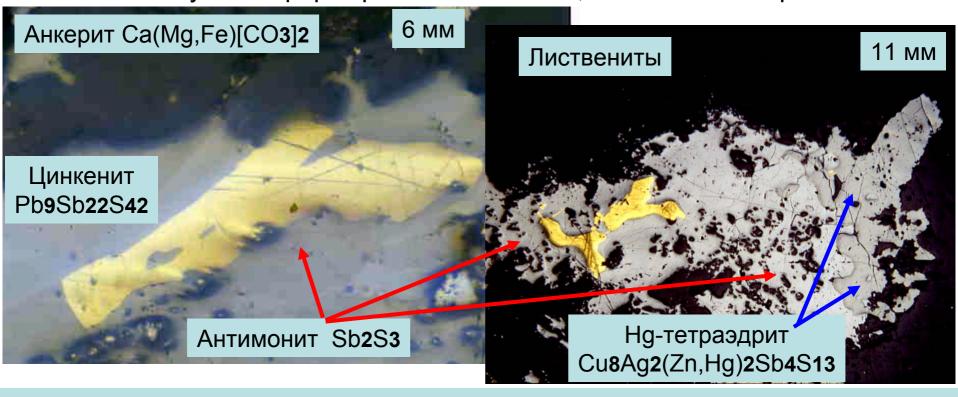


Фотографии в отражённом свете

Эволюция сульфидов и самородного золота карбонатполисульфидной и продуктивной минеральных ассоциаций месторождения Бестюбе, Северный Казахстан в различных рудовмещающих средах

Основные:	Кремнекислые:	Средние:		
граувакки,	аркозы,	полимикты,		
степнякнты	ПЛАГИОГРАНИТЫ	кварцевые днориты		
<u> ХАЛЬКОПИРИТ</u>	<u>галенит</u>	<u>ХАЛЬКОПИРИТ + ГАЛЕНИТ - I</u>		
ТЕННАНТИТ-ТЕТРАЭДРИТ-І	БУЛАНЖЕРИТ + ГАЛЕНИТ	БУРНОНИТ + ТЕННЯНТИТ- ТЕТРАЭДРИТ-І		
тетраздрит - II	БУЛАНЖЕРИТ+СЕМСЕЙИТ+ ДЖЕМСОНИТ	тетраздрит-II+ галенит-II ±БУЛАНЖЕРИТ ± ДЖЕМСОНИТ		
тетраздрит - III	джемсонит+цинкенит	тетряэдрит-III+джемсонит		
высокопробное золото-І				

Ag - тетраздрит (фрейбергит)-IV + низкопробное золото-II



Основные осадители = восстановители золота из гидротерм - углеводороды и графитоид. Т отложения золота обычно 170-190° С.

Золото-антимонитовое месторождение Кварцитовые Горки.

Антимонит в кальците чёрного цвета (с обилием органики) и в кальците белого цвета. Самородное золото в кальците белого цвета (органика «выгорела» при осаждении золота).

α-амальгама золота = ртутистое золото (5-15 масс. % Hg) Ультрагипабиссальное месторождение Кварцитовые Горки, Казахстан глубина формирования 1-1.5 км, P = 0.3-0.5 кбар

Ртутистое золото макро- и микроскопически не отличимо от обычного самородного золота. Фотографии в отражённом свете

С-амальгама золота в гидротермальных месторождениях золота любых типов возникает при обилии ртути и **низкой f S2**

Плутоногенное гипабиссальное месторождение Кварцитовые Горки, Сев. Казахстан

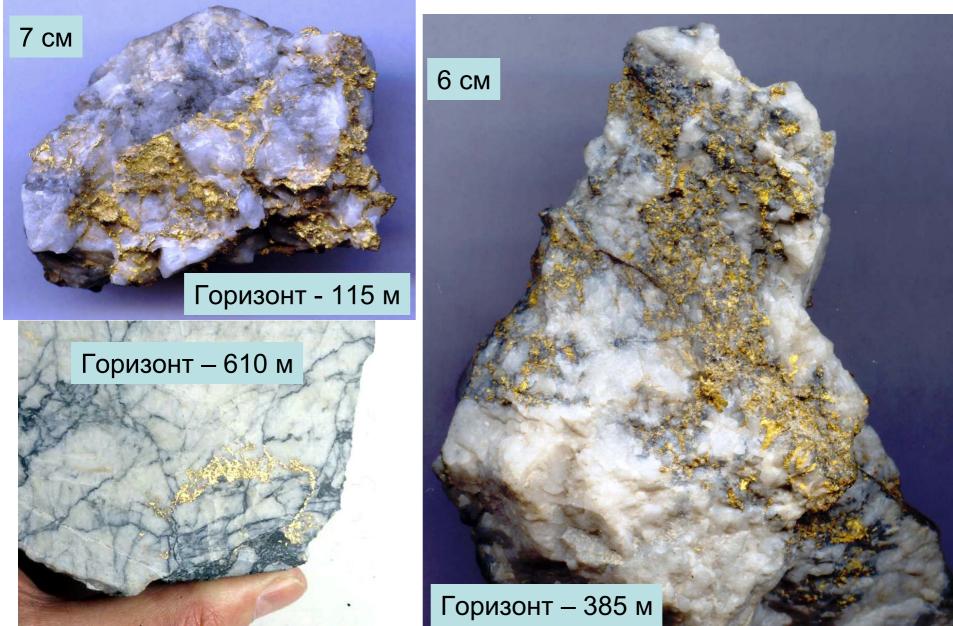
Метакристалл и прожилки ртутистого золота. В отражённых электронах

В характеристическом рентгеновском излучении золота ртути

Ад-золото гипабиссальных месторождений (глубина формирования 1-3 км, P = 0.3-1 кбар)

Золото пробы 830-845 в молочно-белом кварце со сфалеритом, тетраэдритом, цинкенитом, джемсонитом. Акбакай. Центральный Казахстан

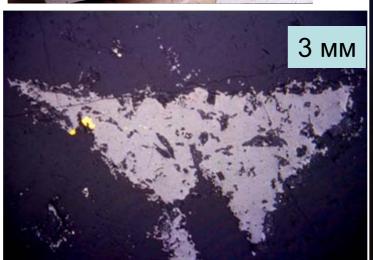
Золото пробностью 870-890 Бестюбе Северный Казахстан


Золото гипабиссального месторождения Бестюбе (глубина формирования 2-3 км, Р = 0.8-1 кбар)

180 г золота с пробностью 865 – 890

9 см 95 г золота пробой 885 Apceнопирит FeAsS

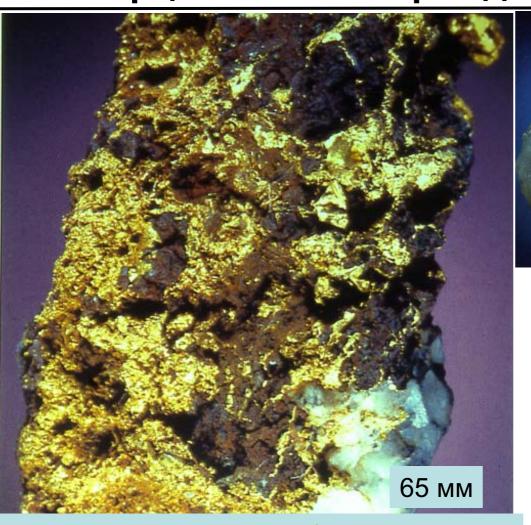
На поверхности м-ния Бестюбе один из участков назывался «Мын-Шункур», то есть тысяча ям. По моим подсчётам из этих ям было добыто около 20 т золота – это один из возможных источников знаменитого Золото гипабиссального месторождения Бестюбе (глубина формирования 2-3 км, Р = 0.8-1 кбар)



Минералы системы Au – Ag - самородное золото гидротермальных плутоногенных

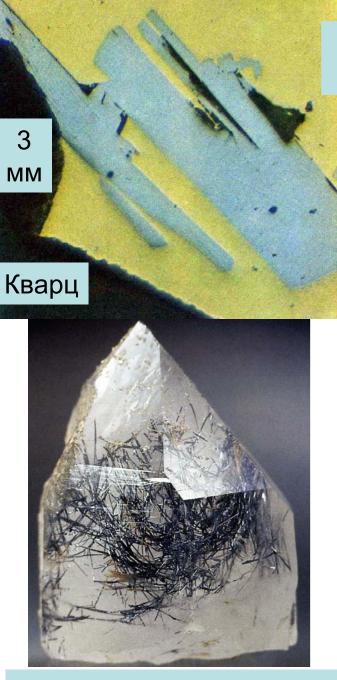
месторождений березит-лиственитовой формации

Месторождение Бестюбе


Слабо зональные тетраэдрит и золото с арсенопиритом сфалеритом в анкерит-кварцевых жилах

110 мм

Золото Берёзовского месторождения, Средний Урал

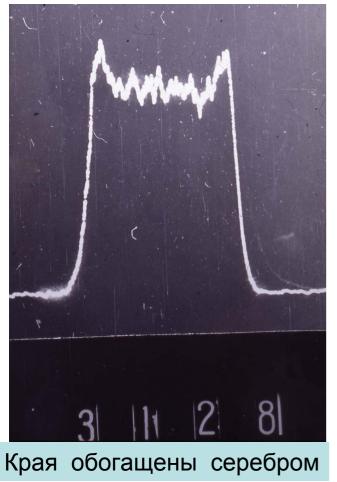

Ассоциации самородного золота гипмезоабиссального Берёзовского золотокварцевого месторождения, Средний Урал

Срастание золота с пробностью 890-915 и теннантита $Cu_{10}Fe_2As_4S_{13}$

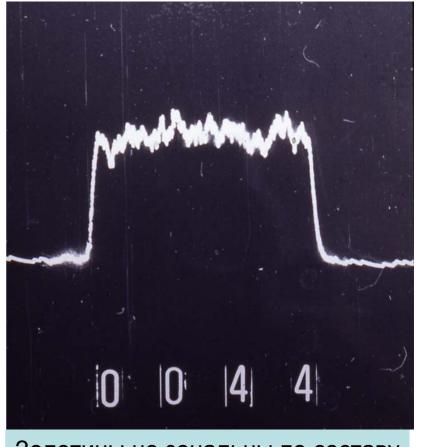
Игольчатый козалит Pb₂Bi₂S₅ в кварце лестничных жил среди березитов по дайковым гранитоид-порфирам

Джемсонит $FePb_4Sb_6S_{14}$ и серебристое золото.

СВ России Колыма



Срастание золота и буланжерита Pb₅Sb₄S₁₁


Иглы джемсонита в кварце

Концентрационные профили Ад через золотины

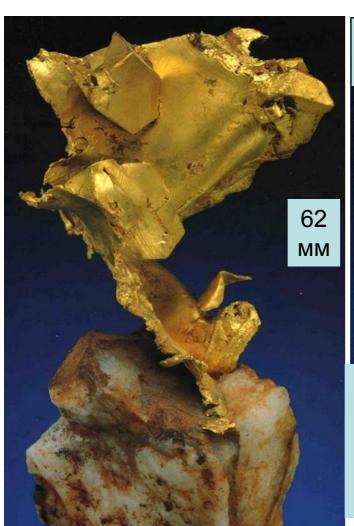
Гипабиссальные м-ния

Мезо- и абиссальные м-ния

Золотины не зональны по составу

Золото мезоабиссальных месторождений (глубина формирования 3-5 км, P = 1-1.8 кбар)

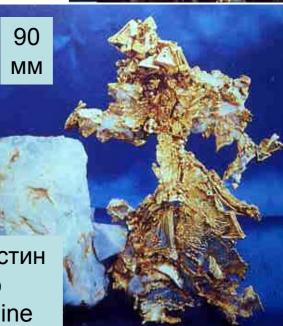
Срастание кубических крист. золота.
Высота 5 см.
Около 1 кг золота.
Клондайк. Аляска



Пластинчатое золото по анкериту в молочно-белом кварце. 13 см. ЮАР

Берёзовское месторождение. 3 см Средний Урал

Самородное золото жильной системы Mother Lode, Калифорния


Кристаллы золота – псевдоморфозы по карбонату с отпечатками от кристаллов кварца.

Москingbird Mine

Золото на кварце с анкеритом.
Tuolumine County

Агрегат кристаллов и пластин золота, заместившего карбонат. Eagles Nest Mine

Агрегат кристаллов золота по карбонату. Colorado Quartz Mine

24

MM

Минералы системы Au – Ag - самородное золото гидротермальных плутоногенных месторождений березит-лиственитовой формации Золото абиссальных месторождений

(глубина формирования 5-12 км, Р=2-3.5 кбар)

Золото с пробностью

945-955, галенит,

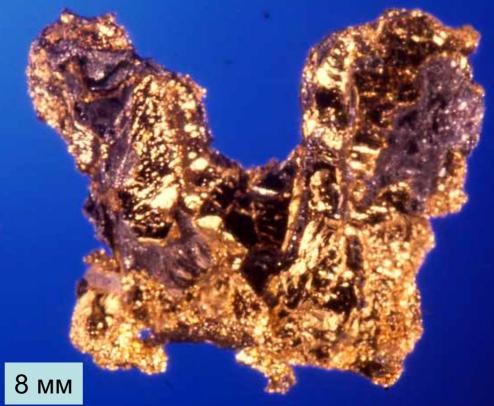
тетраэдрит, алтаит PbTe

в кварце.

Советское, Енисейский кряж

9 MM

Кубооктаэдры


высоко пробного золота

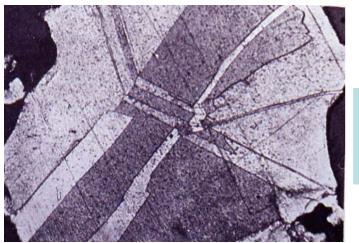
Автоэпитаксия: октаэдры на пластинчатом кристалле золота. Южный Урал

Золото абиссального месторождения Сев. Аксу, СК (глубина формирования 10-12 км, Р = 3-3.5 кбар)

Срастание золота с пробностью 995, теллуровисмутита Bi_2Te_3 и калаверита (Au,_{Ag})Te₂ Срастание золота с пробностью 985 и тетрадимита Bi₂Te₂ S

Кварц растворён в НЕ

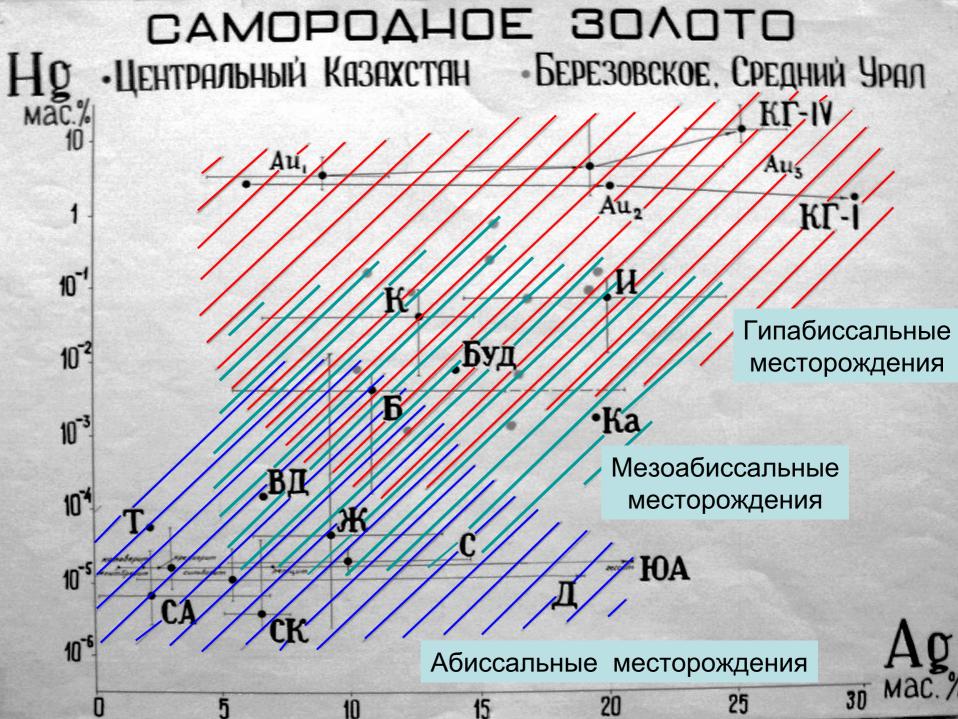
Золото абиссальных месторождений Джеламбет. Сев. Казахстан

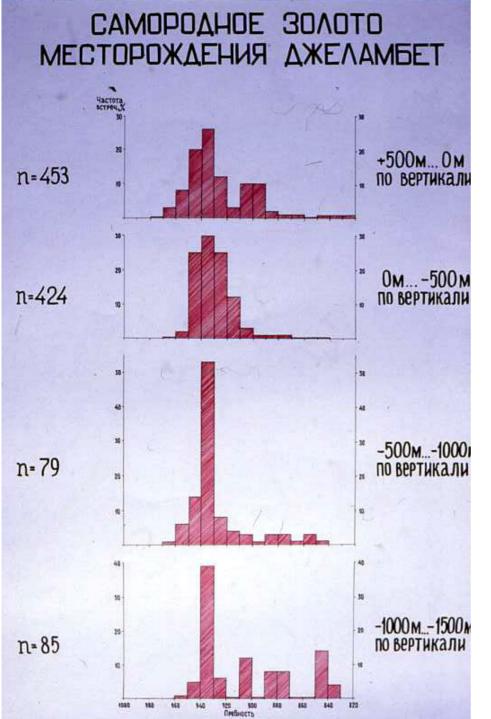


Микроминералогия золота

гидротермальных плутоногенных месторождений березит-лиственитовой формации

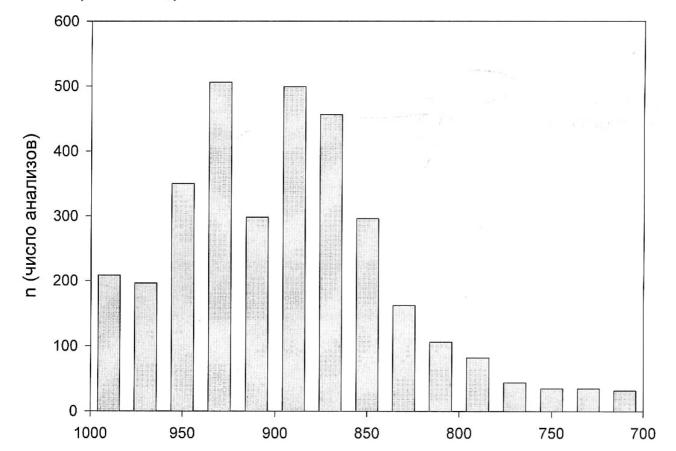
Двойники роста в кристаллах золота

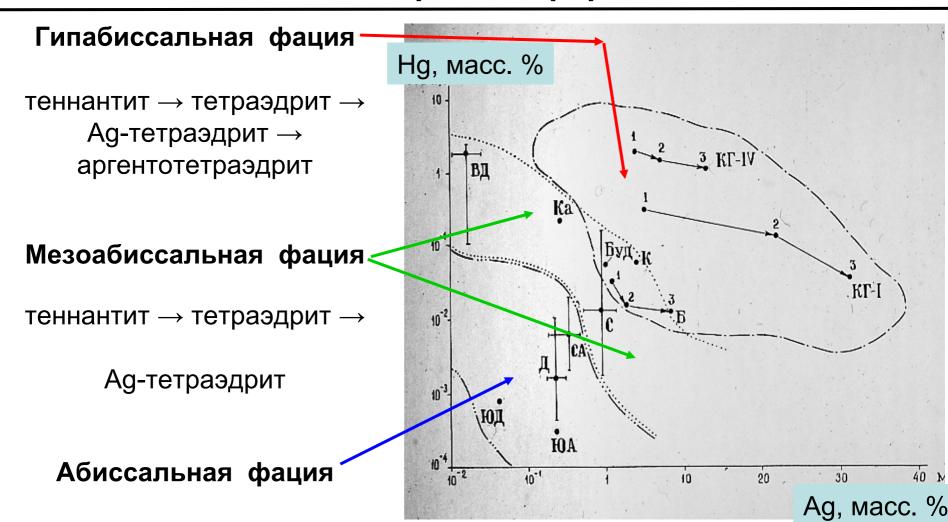




Золотой самородок – агрегат кристаллов

Аншлифы протравлены смесью трёхокиси хрома + HNO3 + HCI («царская водка»)


Фотографии в отражённом свете


Вариации состава золота по вертикали глубоко проникающего месторождения

Состав минералов Au-Ag малосульфидных руд плутоногенной золото-кварцевой формации Северного Казахстана (n=3305)

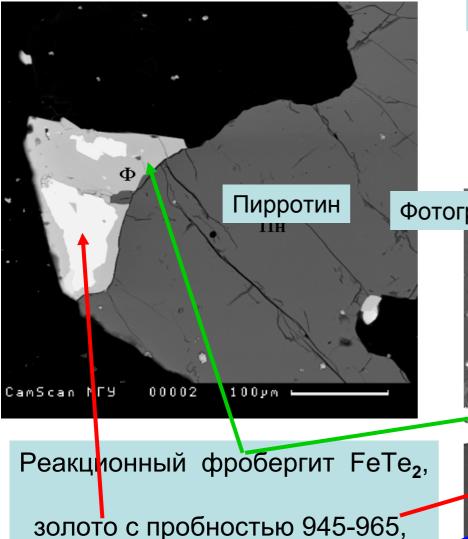
пробность

Эволюция состава минералов группы блёклых руд продуктивной ассоциации плутоногенных гидротермальных месторождений золото-кварцевой формации

теннантит \rightarrow тетраэдрит

Минералы системы Au - Ag – Te

Генеральный тренд в ходе рудообразования Au+Te — Au,Ag+Te — Ag,Au+Te → Ag+Te


Монтбрейит Au2 (Te,Sb,Pb,Bi)3

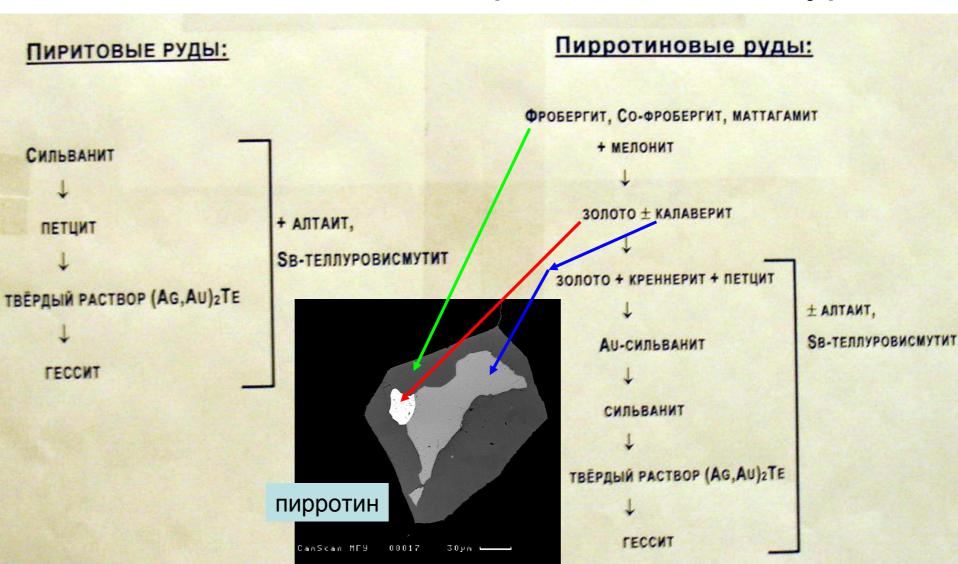
КалаверитAu Te2КреннеритAu3 (Ag,Au,Cu) Te8СильванитAu (Ag,Au,Cu) Te4КостовитAu (Cu,Ag,Au) Te4

 Петцит
 Au Ag3 Te2

 Тв. раствор
 (Ag,Au)2 Te

 Гессит
 Ag2 Te

креннерит Au₃AgTe₈


Абиссальные месторождения

Жана-Тюбе. Сев. Казахстан

Халькопирит – пирротиновые руды среди лиственитизированных туфов оливин. базальтов

Фотографии в отражённых электронах Кр/ Ф Пирротин FeS CamScan 00015

Плутоногенное золото-кварцевое месторождение Жана-Тюбе, Сев.Казахстан Последовательность образования теллуридов

Минералы системы Au – Ag -- Те Твёрдый раствор (Ag,Au)2Те и продукты его распада

Петцит AuAg3Te2 Гессит Ag2Te Ag-золото CamScan MF9 00024 100 pm Джеламбет. Жана-Тюбе. Сев. Казахстан Сев. Казахстан

Фотографии в отражённых электронах

Особенности минеральных ассоциаций глубоко проникающих плутоногенных месторождений золото-кварцевой формации

Тренд эволюции состава блёклых руд обратный – к теннантиту

Вертикальная зональность обратная – с развитием теннантита на верхних горизонтах

Золотоантимонитовое месторождение Кварцитовые Горки - I

Срастание галенита, аргентотеннантита и Нд-золота в Аѕ-пирите

Срастание золота и теннантита. Берёзовское, Ср. Урал.

65 мм

0.04 мм

0.2 MM

Фотографии в отраж. свете

Платиноиды в

гидротермальных

плутоногенных

месторождениях

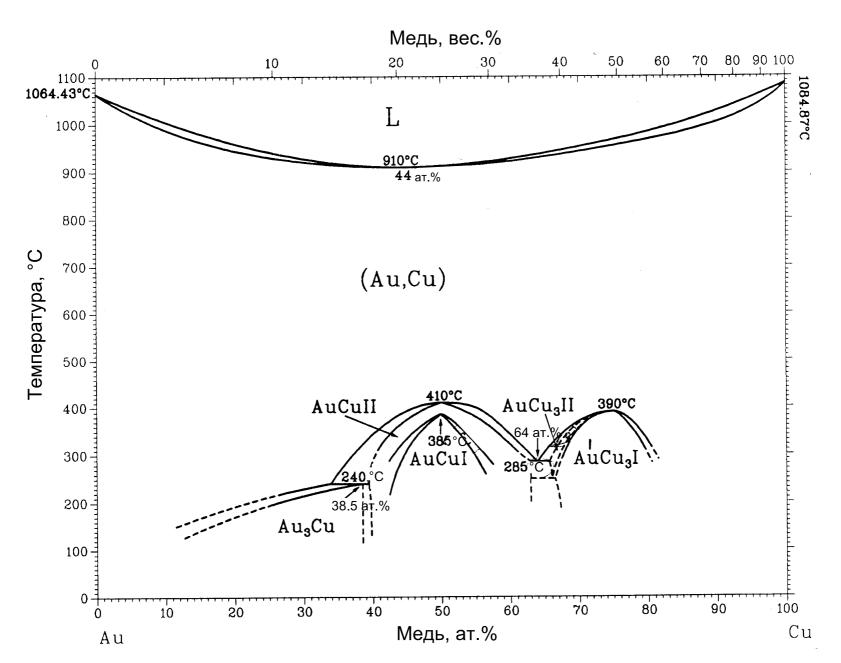
золота

Содержания золота, платины, палладия в богатых рудах плутоногенных золото-кварцевых месторождений Северного Казахстана

Рудовмещающие породы:

а - черносланцевые

б - иные


	ı	,		
Месторождения	n	Au , г/т	Pt, г/т	Pd, г/т
Гипабиссальные	2	25.4 -	< 0.1	< 0.02 -
a		153		≤ 0.02
Гипабиссальные	2	32.8 - 642	< 0.1	< 0.02 -
б				≤ 0.02
Лезоабиссальные	2	1570 -	< 0.1	< 0.02 -
a		2160		≤ 0.02
Лезоабиссальные	2	249 -	< 0.1	< 0.02
б		2180		
Абиссальные	2	69.0 -	< 0.1	< 0.02
a		1210		
Абиссальные	4	111 -	< 0.1	< 0.02
б		604		

Гидротермальное плутоногенное месторождение Золотая Гора -

смятые и лиственитизированные родингиты с минералами Au – Cu (среди лиственитизированных серпентинитов)

Система Au - Cu

Минералы системы Au – Cu = «медистое золото»

аурикуприд - Au Cu3, куб.

купроаурид - Au Cu (Au2Cu3 – Au2Cu), куб.

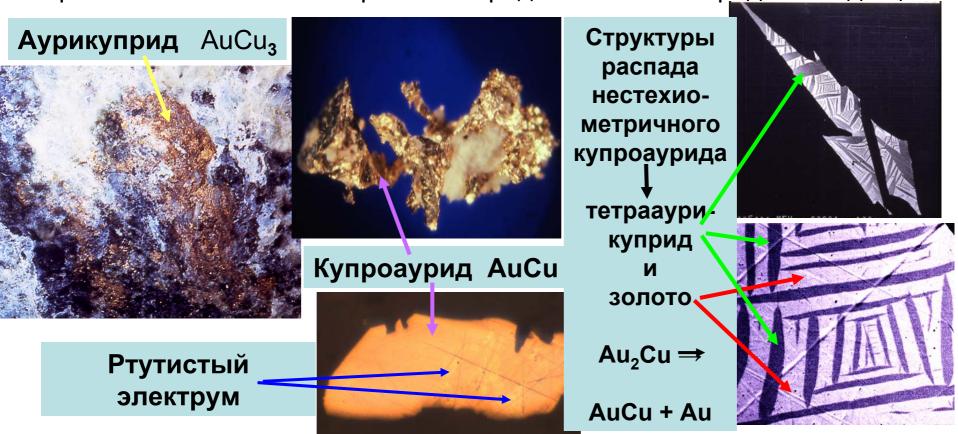
минерал Au3Cu - Au3 Cu - Au6 Cu, куб.

Продукты твердофазных превращений купроаурида при отжиге

тетрааурикуприд - Au Cu, тетр. (аналог синт. AuCu-I)

«рожковит» - **Au Cu**, ромб. (аналог синт. AuCu-II)

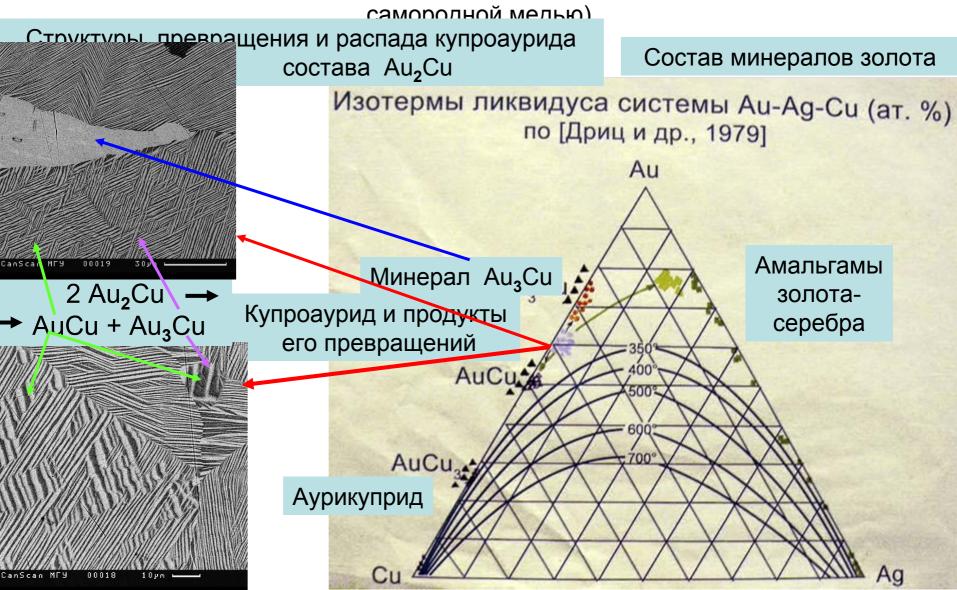
Продукты твердофазных превращений **купроаурида** с избытком золота при отжиге


тетрааурикуприд + золото (структуры распада)

тетрааурикуприд + минерал Au3Cu (структуры распада)

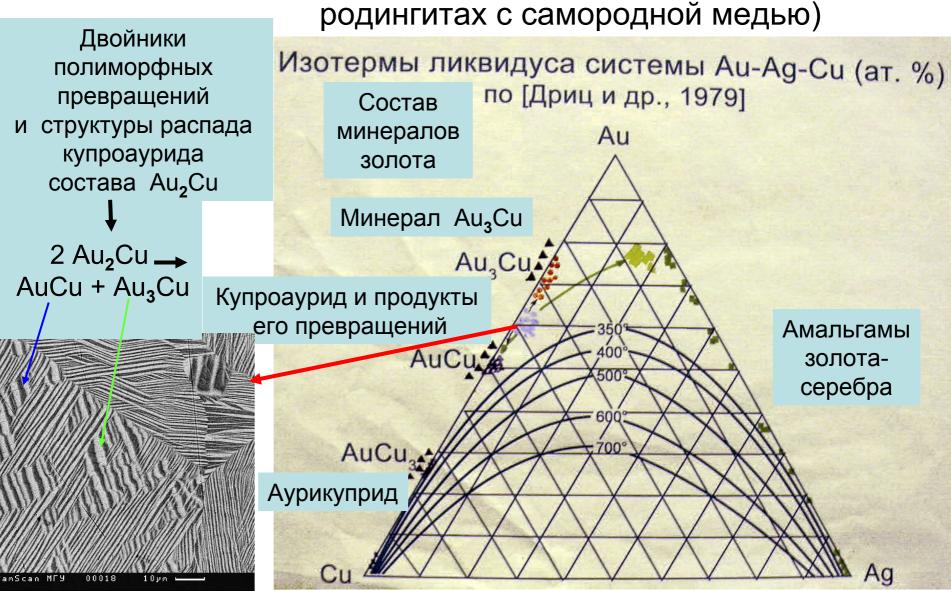
Минералы системы Au – Cu. Продукты реакции золотоносных растворов с самородной медью при крайне низкой f S₂

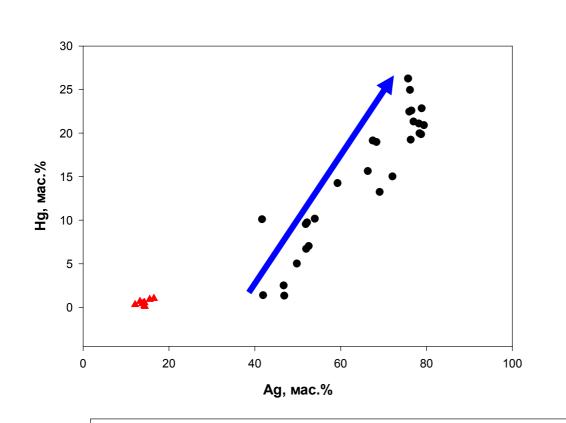
Гидротермальное плутоногенное месторождение


Золотая Гора (кальцитовые, кальцит-хлорит-кварцевые, кварц. прожилки в лиственитизированных родингитах с самородной медью)

Минералы системы Au – Cu. Гипабиссальное

плутоногенное месторождение Золотая Гора (кальцитовые,


хлорит-кварцевые, кварцевые прожилки в лиственитизированных родингитах с


Гидротермальное плутоногенное месторождение

Золотая Гора (кальцитовые, кальцит-хлорит-кварцевые,

кварцевые прожилки в лиственитизированных породах -

Плутоногенное гипабиссальное месторождение березит-лиственитовой формации Золотая Гора, Урал

минералы Au-Ag-Hg в лиственитизированых серпентинитах
 минералы Au-Ag-Hg в лиственитизированных родингитах

минералы Au-Ag-Hg в лиственитизированных родингитах в ассоциации с медистым золотом

Эволюция состава

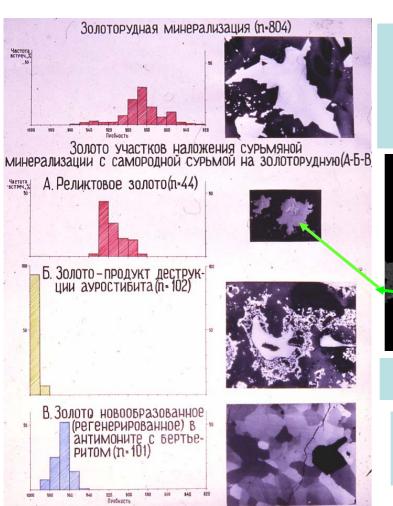
амальгам Au – Ag :

OT

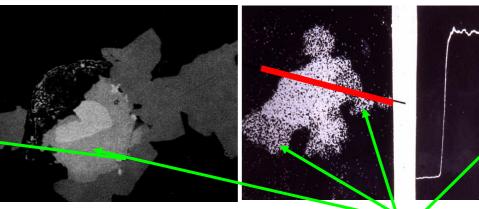
ртутьсодержащего

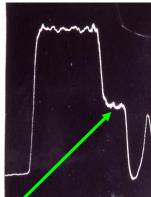
золота, через

ртутистый электрум и


ртутистый кюстелит

ДО


ртутистого серебра


Ауростибит $Au Sb_2$, куб.

В гипабиссальных месторождениях в участках брекчирования и наложения послезолоторудной Sb минерализации с самородной сурьмой возникает реакционный ауростибит

Плутоногенное гипабиссальное месторождение Бестюбе, Северный Казахстан

Золото с каймой замещения ауростибита.

В отражённом свете

В рентген. лучах Au Концентр. профиль Au

О генезисе золото-кварцевой березит-лиственитовой формации

Изотопный состав кислорода шеелита, минерала который наиболее трудно перекристаллизовывается и потому устойчив к эпигенетическому изотопному обмену, практически постоянен в плутоногенных гидротермальных золото-кварцевых месторождениях березитлиственитовой формации Казахстана, Урала, Средней Азии, Северной и Южной Америк:

 δ 18 O = + 4 ÷ + 6 % SMOW.

Это свидетельство глубинного метаморфогенного источника рудоносных H2O – CO2 флюидов, которые сопровождали становление золотоносных инверсионных тоналит-гранодиорит-адамеллитовых и раннеорогенных монцонит-граносиенит-гранитных формаций складчатых областей и их рамы [Спиридонов, 1995].