
Аэрокосмическая съемка Аэрофотоснимок

Проекция аэрофотоснимков называется *центральной*.

Средний масштаб аэрофотоснимка: $1 / m = f / H_{\phi}$

Масштаб изменяется по площади снимка потому, что присутствуют *искажения*.

Аэрофотоснимок

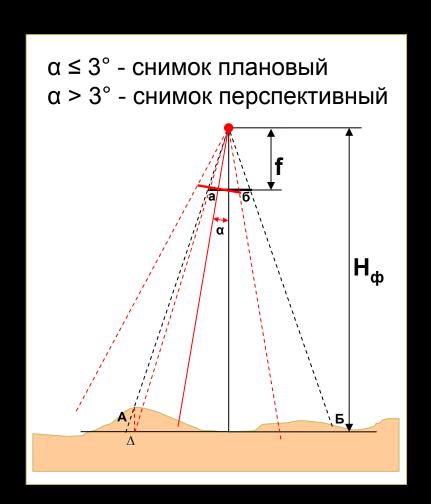
S' – центр проектирования

о - центральная точка снимка

n - точка надира

O' – проекция центральной точки снимка

с - точка нулевых искажений



Аэрофотоснимок

Виды искажений, связанные:

со съемочной аппаратурой

- с параметрами атмосферы
- с условиями съемки:
- невертикальность
 оптической оси
 (α угол наклона снимка)
- с подстилающей поверхностью:
- рельеф

Сдвиг точек из-за рельефа местности: $\Delta h = r h / H$, где r - расстояние от центральной точки снимка

Смещение точек наклонного снимка: $\Delta \alpha = r^2 \sin \alpha / f$

Сдвиг точек из-за кривизны Земли: $\Delta R = r^3 \ H \ / \ 2 \ R \ f^2$

Пусть заданы параметры:

$$H = 1000$$
 м, $f = 200$ мм, $\alpha = 2^{0}$, $R = 6378$ км, $h = 100$ м

При r = 1 см и 10 см:

$$\Delta h_1 = r h / H = 0.01 * 100 / 1000 = 0.001 M = 1 MM$$

$$\Delta h_{10} = 0.1 * 100 / 1000 = 0.01 \text{ M} = 1 \text{ cm}$$

$$\Delta \alpha_1 = r^2 \sin \alpha / f = 0.00002 \text{ m} = 0.02 \text{ mm},$$

$$\Delta \alpha_{10} = 0.002 \text{ M} = 2 \text{ MM}$$

$$\Delta R_1 = r^3 H / 2 R f^2 = 2 * 10^{-11} M$$

$$\Delta R_{10} = r^3 H / 2 R f^2 = 2 * 10^{-6} M$$

Рабочая область измерений:

H = 1000 м, h = 100 м, предельная точность 1 см

$$\Delta h = r h / H$$

 $r = \Delta h * H / h$
 $r = 0.01 * 1000 / 100 = 0.1 M = 10 CM$

Для горных районов H = 1000 м, h = 1000 м, предельная точность 1 см

$$r = 0.01 * 1000 / 1000 = 0.01 M = 1 CM$$

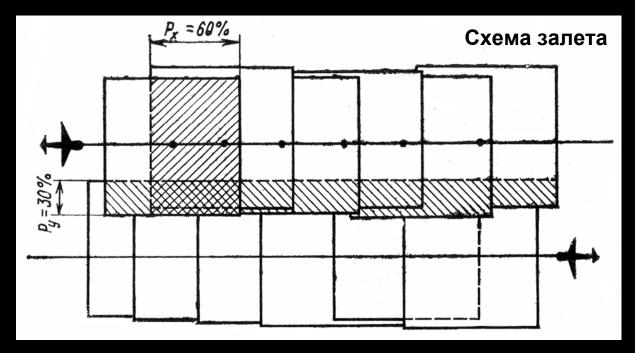
Процесс избавления от искажений на фотоснимках называется *тансформированием*

1. Аналитический:

Известны: координаты центра фотографирования (X, Y, H) углы наклона оптической оси (крен, тангаж и рысканье) высота фотографирования

По формулам пересчитываются координаты точек снимка.

2. С использованием контрольных точек:


Известны: координаты точек на местности (GCP – ground control points)

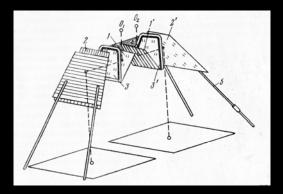
Измеряются: координаты этих точек на снимке.

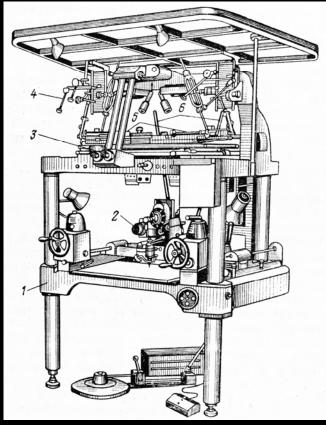
Находятся зависимости и составляются формулы пересчета координат.

Часто картографируемая территория не покрывается одним снимком, подбирают группу снимков и увязывают их между

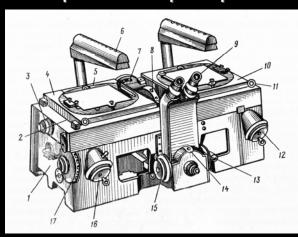
собой.

- 1. Накидной монтаж (используются нетрансформированные снимки)
- 2. Фотоплан (используются трансформированные снимки с остаточными искажениями за рельеф)
- 3. Ортофотоплан (на снимках отсутствуют все виды искажения)


Стереоскопические свойства снимков


Стереоэффект – рельефное изображение местности

Бывает прямой, обратный и нулевой

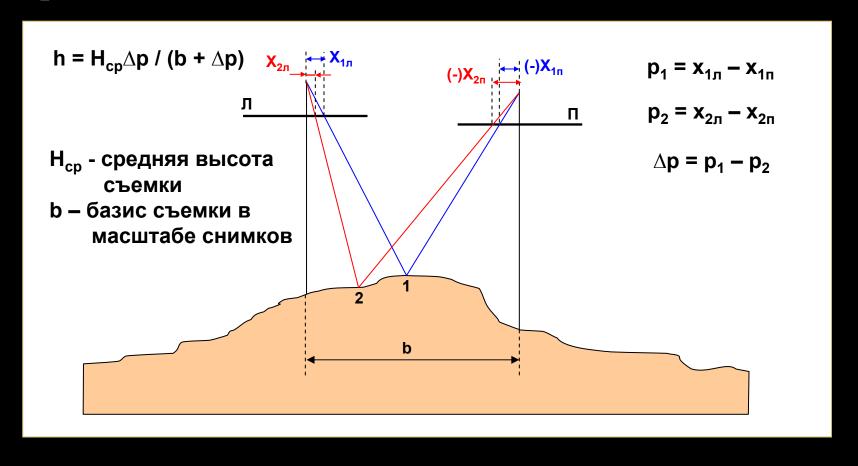

Стереоскопы

Стереопроекторы

Стереокомпараторы

Цифровые фотограмметрические станции

Стереоскопические свойства снимков



Параллакс – разность координат одной и той же точки на левом и правом снимках стереопары

Продольный параллакс разность абсцисс $\mathbf{p} = X_n - X_n$

Поперечный параллакс разность ординат $\mathbf{q} = \mathbf{y}_{n} - \mathbf{y}_{n}$

Аэрокосмическая съемка Стереоскопические свойства снимков

Аэрофототопографическая

Контурно-комбинированная

Стереотопографическая

Для составления ситуации (контуров) используются аэрофотоснимки или космические снимки высокого разрешения

Данные о рельефе получают в поле путем нивелирования.

Данные о рельефе получают с помощью стереофотограмметрической модели по стереопаре снимков на универсальном стереофотограмметрическом приборе

Аэрокосмическая съемка Контурно-комбинированный способ

Технологическая схема

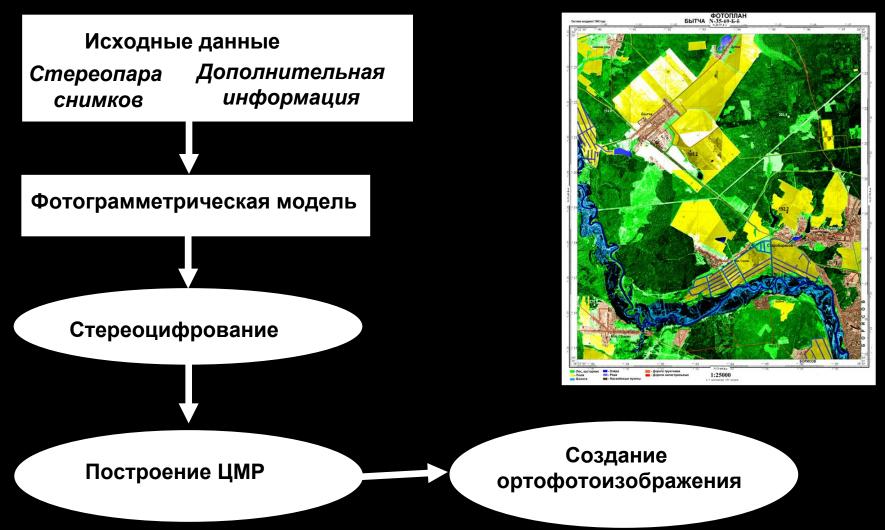
1. Организация съемочного процесса

1. Организация съемочного процесса

2. Монтаж снимков

2. Нивелирование

3. Дешифрирование снимков

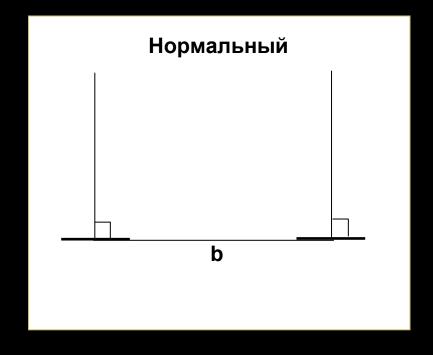

3. Уравнивание измерений

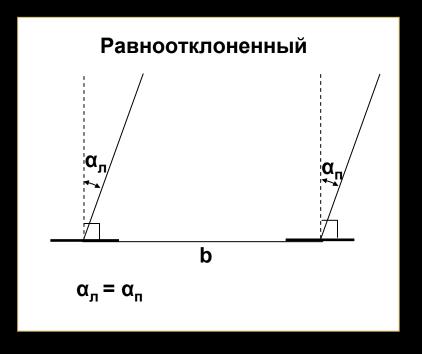
4. Составление контурной части

4. Интерполяция горизонталей

Составление карты

Аэрокосмическая съемка Стереотопографическая съемка




Фототеодолитная съемка

Наземная стереотопографическая съемка

По положению оптических осей фототеодолита к базису бывают различные случаи съемки.

Аэрокосмическая съемка Лазерное сканирование

Лазерный сканер — прибор, выполняющий измерения расстояний и углов до точек лазерных отражений

вычисление пространственных координат

Очень высокая частота
(сотни тысяч измерений в секунду) =
= большой объем координатных
данных =
= цифровые модели местности

(объектов) высокой точности

Аэрокосмическая съемка Лазерное сканирование

Наземное ЛС

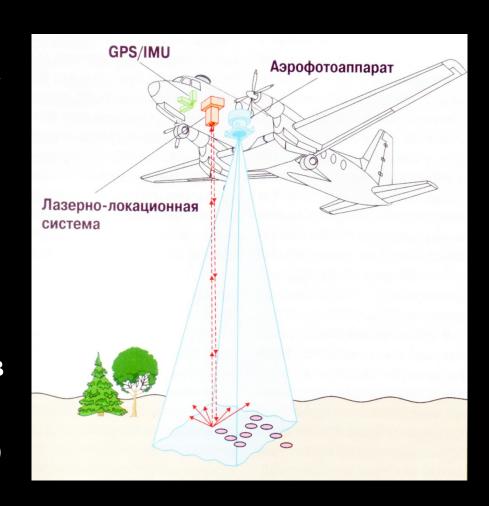
Преимущества

исключение доступа персонала в опасные зоны

высокая точность, детальность данных, высокая производительность работ, экономия средств

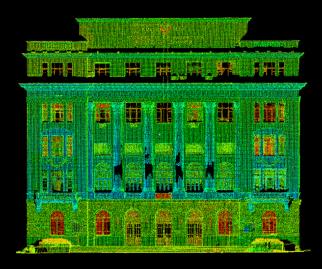
Воздушное ЛС

Высота съемки – 500-1500 м


Точность: средняя – 15 см, максимальная – 5 см

Преимущества

получение истинного рельефа (в т.ч. под кронами деревьев)


определение местоположения и формы объектов сложной структуры

получение детальных топографических карт, планов местности без явных ориентиров (тундра, пустыня)

Лазерное сканирование

Топографические карты

Основной метод создания Аэрофототопографическая съемка

Основной метод обновления Аэрофототопографическая съемка

Сроки обновления

раз в 5 лет — обжитые территории раз в 10 лет — малообжитые территории

Дежурный масштаб

1:100 000