Обшая тема:

МАГМАТИИЧЕСКИЕ ФОРМАЦИИ ОКЕАНОВ И ПРОИСХОЖДЕНИЕ ТОЛЕИТОВЫХ СЕРИЙ МОВ

Лекция № 13

ПЛУТОНИЧЕСКИЙ КОМПЛЕКС ОКЕАНОВ:

строение, состав, условия формирования

Каноническое строение океанической коры (хессовского типа)

		Ocean Crustal	Typical Ophiolite	Normal	Ocean Crust
I. Глубоковод-	Lithology	Layers	Thickne	ss (km)	P wave
ные осадки	Deep-Sea Sediment	1	~ 0.3	0.5	1.7 -2.0
II. Пиллоу-лавы	Basaltic Pillow Lavas	2A & 2B	0.5	0.5	2.0 - 5.6
и дайковый комплекс	Sheeted dike complex	2C	1.0 - 1.5	1.5	6.7
II. Изотропные и	Gabbro	ЗА			- 4
габбро	Layered Gabbro	3B	2-5	4.7	7.1
	Layered peridotite		Y		
. Расслоенные и тектонизирован- ные перидотиты	Unlayered tectonite peridotite	4	up to 7		8.1

Вид на восточный борт рифтовой долины САХ к северу от разлома <u>15-20 с.ш.</u>

Протяженные обнажения океанических перидотитов (мантийны х реститов)

> Рисунок, выполненный профессором Л.В. Дмитриевым с борта ГОА "Наутиль" в 1992 г. (проект FARA)

Расслоенные габбро офиолитов Омана (пример слоя 3В)

Sandrin Feig permission

Жильные плагиограниты в офиолитах Омана

Sandrin Feig permission

Соответственно главным структурам океанов выделяются плутонические комплексы: срединно-океанических хребтов (СОХ) океанических островов и подводных гор

Плутонические комплексы СОХ подразделяются на:

- низкоскоростные и
- высокоскоростные зоны окенанического спрединга

Низкоскоростные СОХ являются наиболее благодарным объектом для исследования плутонических комплексов, поскольку их гребневая зона сложена корой хессовского типа (перидотиты + габбро)

Обнажения к югу и востоку от разломной зоны Кейн

Active

Transform

Fault Peridotite

Обнажения перидотитов и габброидов в уступах трансформного разлома. Дно рифтовой долины сложено пиллоу-лавами.

Recent Basalt

Kane Fracture Zone Looking South

Наблюдения с борта ГОА «Шинкай», 1995 г.

Basalt

Old Basalt, Sediment

Главные компоненты плутонических комплексов низкоскоростных зон

(Срединно-Атлантического и ЮЗ Индийского хребтов)

СЕРПЕНТИНИЗИРОВАННЫЕ МАНТИЙНЫЕ ПЕРИДОТИТЫ

лерцолиты, гарцбургиты и дуниты (в САХ)

ЖИЛЬНЫЕ ГРАНИТОИДЫ

Плагиограниты (трондьемиты) ИНТРУЗИВНЫЕ (КУМУЛЯТИВНЫЕ) ГАББРО

 Нормальные габброиды: троктолиты, Ol-Cpx-Plгаббро и габбронориты,
Гнейсовидные габбро: Pl-Cpx-Opx-Mt-Ilm-Ap±Bi

Метаморф изованные аналоги

АМФИБОЛИТЫ

- 1. массивные,
- 2. сланцеватые

(а) Гнейсовидное габбро с реликтовыми зернами и необластами Pl

(б) Офитовое габбро с признаками катаклаза в двойниках

(в) Серпентинизированный дунит (wall rock process)

Структуры океанических габбро и дунита, формирующиеся в результате: (а) перекристаллизации, (б) катакластического воздействия, (в) метасоматических процессов

ГЛАВНЫЕ ПРОЦЕССЫ, формирующие строение океанической литосферы

МАГМАТИЧЕСКИЕ

- 1. Выплавление MORB-магм и формирование обедненных мантийных реститов
- 2. Дифференциация MORBмагм в промежуточных камерах
- 3. Плавление линз и даек основного состава в условиях малоглубинной мантии и образование плагиогранитов (трондъемитов)

МЕТАМОРФИЧЕСКИЕ

Последовательное изменение структуры и состава пород океанической литосферы по мере их воздымания в осевой зоне СОХ ГЛАВНЫЙ ФАКТОР: взаимодействие с флюидом морского происхождения

ГИДРОТЕРМАЛЬНЫЕ

Генетическое значение этих процессов МАГМАТИЧЕСКИЕ МЕТАМОРФИЧЕСКИЕ

Определяют химическое разнообразие и особенности <u>первичного минерального</u> <u>состава</u> базальтов, габбрроидов, перидотитов и плагиогранитов Формируют вещественный состав консолидированной океанической коры и в конечном счете определяют детали пространственного строения плутонического комплекса СОХ

ГИДРОТЕРМАЛЬНЫЕ

Задают металлогеническую специфику и баланс вещества гидротермальных систем СОХ ("черные курильщики", "метановые струи" и другие)

Распределение известных субмаринных гидротермальных систем

Гричук, 2004

Схема геохимических процессов в гидротермальной системе срединно-океанического хребта

Гричук, 2004

Схема эволюции "черного курильщика"

По: (Hekinian, Fouquet, 1975) с изменениями Гричука (2004)

А) стадия формирования ангидритовой "эмбриональной" постройки на дне;
Б) стадия высокотемпературной гидротермальной деятельности и формирования сульфидной постройки;

В) стадия диффузной гидротермальной деятельности: 1 – ангидрит; 2 – сульфиды *Си и Fe;* 3 – сульфиды Zn и Fe; 4 – низкотемпературные сульфиды Fe; 5 – прожилкововкрапленная минерализация в базальтах; 6 – направление движения гидротермальных растворов.

Регрессионный характер метаморфизма океанических пород

Ретроградный тренд океанического метаморфизма отражает воздымание глубинных пород океанского фундамента к поверхности океанического дна

Метаморфизм в хессовском разрезе океанической коры: регрессивный тренд, наиболее полно описывающий тектоническую и вещественную эволюцию корово- мантийного субстрата по мере его подъема под осевой зоной COX

Фациальная схема океанического метаморф изма (Силантьев, 1995 г.)

Изотопный состав Sr в метаморфогенных минералах из метагаббро САХ

в зависимости от температуры и отношения вода-порода W/R (Силантьев, Костицын, 1990)

> 0.7100 Подводное выветривание и метамор физм цеолитовой фации Sap ⁸⁷Sr/ ⁸⁶Sr, в минер але > 30 0.7080 Спилитизация и Act (Al2O3=0.9-1.5wt.%), +Chl, W/R = 10 - 30метамор физм 0.7060 Условия верхов Al-Act зеленосланцевой (A12O3 = 4.10 - 6.56 wt. %)фации и $\underline{W}/\underline{R} = 3 - 10$ амфиболитовая фация 0.7040 Hb (Al2O3=9.6-17wt.%), Al-Act (Al2O3=6.9-7.10wt.%), W/R = 1 - 3Протолит 0.7020 0 100 200 300 400 500 600 700 800 T emnep amy p $a, {}^{o}C$

История подъема пород плутонического комплекса САХ, записанная в изотопном составе Sr во вторичных фазах,

образованных при разных пемпературах и на разных уровнях глубинности

Индикаторная роль интрузивных пород (условно III слоя)

НА МАГМАТИЧЕСКОЙ СТАДИИ

Геохимический тип мантийного источника и степень деплетированности (Sr-Nd, P3Э)

2. Внутрикоровая эволюция магм (вариации главных и примесных элементов в сериях пород, фазовый состав магм, T-P-fO2 условия и составы минералов)

НА МЕТАМОРФИЧЕСКОЙ СТАДИИ

3. Условия метаморфического преобразования протолита (T°C, W/R):

тип минерального парагенезиса, состав минералов (Fe и Ti в Sp, Al и Ca в Px, Fe и Cl в Serp, составы сосуществующих Amph и Chl, изотопный й состав Sr в породах и минералах) Индикаторная роль перидотитов (условно IV слоя)

НА МАГМАТИЧЕСКОЙ СТАДИИ

1. Геохимический тип мантийного источника и степень его деплетированности (Sr-Nd, РЗЭ, минеральный состав)

2. Степень плавления мантийного источника (Cr# в реликтовой шпинели, Mg# в ОІ и пироксенах, АІ и Na в Орх и Срх, MgO/SiO₂ и Al₂O₃/SiO₂ в породах)

3. Температура субсолидусного переуравновешивания (составы сосуществующих минералов) НА МЕТАМОРФИЧЕСКОЙ СТАДИИ

4. Условия метаморфического преобразования протолита (T°C, W/R):

тип минерального парагенезиса, состав минералов (Al и Cl в Amph, An в Pl, Mg# в хлорите), вариации главных и примесных элементов в сериях пород, ф азовый состав магм, изотопный состав Sr в породах и минералах

Петролого-геохимические особенности плутонического комплекса САХ

МАГМАТИЗМ

Распределение индикаторных характеристик в габброидах и перидотитах вдоль простирания осевой зоны САХ соответсвует его крупномасштабной геохимической сегментации

Эволюция магматических систем, формирующих плутонический комплекс, связана с многоактным плавлением и смешением расплавов различной г/х специфики

Существует вещественная гетерогенность мантийного магматизма САХ, проявленная в базальтах и плутонических породах В гребневой зоне САХ присутствуют мантийные реститы, генетически не связанные с продуктами современного магматизма рифтовой долины Петролого-геохимические особенности плутонического комплекса САХ

МЕТАМОРФИЗМ

ГЛАВНЫЙ АГЕНТ ОКЕАНИ-ЧЕСКОГО МЕТАМОРФИЗМА: флюид морского происхождения проникает до основания океанической коры (вплоть до петрологической границы Moxo)

Взаимодействие флюида с габброидами происходит в условиях пограничных между магматическим и метаморфическим этапами образования плутоничес-кого комплекса САХ

Степень протекания реакций с участием флюида зависит от отношения вода-порода (W/R) на внутрикоровом отрезке траектории подъема мантийного диапира

Сегментация САХ и условия метаморфизма коррелируют с мощностью литосферы и глубиной отделения расплава от мантийного диапира

Схема процессов, формирующих строение океанической литосферы

Обшая тема:

МАГМАТИИЧЕСКИЕ ФОРМАЦИИ ОКЕАНОВ И ПРОИСХОЖДЕНИЕ ТОЛЕИТОВЫХ СЕРИЙ МОВ

Лекция № 14

УСЛОВИЯ ОБРАЗОВАНИЯ И КРИСТАЛЛИЗАЦИИ толеитовых магм срединных хребтов

Распределение РЗЭ и изотопные характеристики базальтов N-MORB и E-MORB

ИСТОЧНИКИ БАЗАЛЬТОВЫХ МАГМ

N-MORB

относительно обедненный **E-MORB**

относительно обогащенный

Конкретные проблемы образования базальтов N-MORB и E-MORB в зонах океанического спрединга

Оценка составов первичных и родительских магм срединно-океанических хребтов

Главные источники информации:

(1) составы высоко-Mg стекол и базальтов; (2) составы примитивных включений в Ol

Аналоги исходных магм следует искать среди составов наиболее магнезиальных базальтов и стекол

Ho!	Бол	ьшин	СТВО	толе	еитов	- \	/же
φραι	кцис	ониро	ванні	ые	поро	ДЫ	С
MgC	<	8%	, И	П	ониже	енн	ым
соде	ержа	нием	Ni				

Петрохимические параметры наиболее примитивных базальтов и стекол СОХ

Из 1700 анализов стекловатых разностей N-MORB, выделено 50 наиболее примитивных

> MgO > 9% SiO2 - 47-51% mg# - 0.66-0.76

Эти составы близки первичному расплаву

Presnall & Hoover (1987)

Примеры наиболее примитивных базальтов и стекол типа N-MORB (Presnall & Hoover, 1987)

	All-77-76-61	ARP-74-10-16	Y-87-6-20
SiO ₂	51.20	49.47	47.52
TiO ₂	0.84	1.04	0.73
Al ₂ O ₃	15.00	14.57	14.39
FeO	7.90	8.08	9.52
MnO	0.16	0.20	-
MgO	9.02	10.66	14.51
CaO	13.3	12.21	10.98
Na ₂ O	1.89	2.19	1.84
K ₂ O	0.08	0.16	-
P ₂ O ₅	-	0.09	-
Mg#	0.67	0.70	0.73

Факторы, определяющие вариации состава примитивных расплавов N-MORB

• химический состав мантийного источника

• степень плавления источника

• глубина магмогенерации

Nepheline

Возможные генетические соотношения первичной и родительских магм Температура SiO_2 , TiO_2 , щелочи Производные магмы S Родительская Глубина Первичная 100 Al₂O₃, CaO Производные !магмы ¦ MgO Понижение температуры

Три этапа решения проблемы образования и эволюции нормальных толеитовых магм:

- Идентификация главных серий или ассоциаций базальтов N-MORB, оценки условий кристаллизации
- 2) Определение состава первичной магмы и параметров магмогенерации
- 3) Расшифровка природы связи родительских магм и первичных расплавов

Экспериментальные исследования условий зарождения и дифференциации примитивных магм

Методы "ПРЯМОГО" и ОБРАТНОГО экспериментального моделирования

Непосредственное плавление мантийных пород (лерцолиты, гарцбургиты, пироксениты)

с целью определения степени плавления и *P-T* параметров,

при которых состав модельной выплавки даст реалистичный прогноз первичной магмы Для заданного состава высокомагнезиального базальта найти давление равновесия с ассоциацией минералов мантийного рестита

<u>Изучение смены ликвидусных</u> <u>минералов по мере увеличения</u> <u>давления</u> Р-Т диаграммы магнезиальных базальтов СОХ как основа обратного моделирования источника (H₂O=0)

 При давлении > 8 кбар на ликвидусе расплава примитивного толеита стабильны ОІ и СРх => перидотитовый состав источника расплавов

• Расширение поля стабильности высоко-Са пироксена с увеличением давления

"Прямое" (forward) плавление мантийных гипербазитов как основа реконструкции условий образования первичных магм

Включает экспериментирование с разнообразными гипербазитами (*лерцолиты, гарцбургиты, пироксениты*) и породами основного состава (*амфиболиты, эклогиты*)

Поиск условий плавления, при которых получаются экспериментальные стекла близкие по составу наиболее примитивным магнезиальным MORB

Главный результат:

В составе океанической мантии доминируют плагиоклазовые и шпинелевые лерцолиты (OI-PI-CPx-Opx-Sp)

Сравнение экспериментальных и природных "первичных расплавов" для толеитов океанических рифтов (ТОР)

Состав	5 кбар,	10 кбар,	TOP-1
расплава	1300° C	1350° C	(Дмитриев и
			<i>др</i> ., 1984)
SiO ₂	54.1	50.3	49.32
TiO ₂	0.5	0.7	0.60
Al ₂ O ₃	11.0	17.1	15.10
FeO	8.0	7.6	7.65
MnO	-	-	0.20
MgO	13.0	10.4	13.08
CaO	10.0	11.6	12.38
Na₂O	1.7	2.2	1.61
K ₂ O	0.3	-	0.06
P ₂ O ₅	-	-	-
Mg#	0.75	0.73	0.75

Оценка степени плавления и диапазона давлений по результатам "прямых" экспериментов

> Степень плавления исходного вещества (обычно F₁=10-15%)

 $G_{HCT} = F_I \times C_{PACNAB} \rightarrow F_I = C_{HCT} / G_{PACNAB}$

о Примерный диапазон давлений

метод графического проецирования природных составов на барометрически калиброванные тройные диаграммы

Проецирование составов экспериментальных стекол как основа построения барометрических диаграмм

Состав	5 кбар,	10 кбар,	Нормативный	5 кбар,	10
расплава	1300° C	1350° C	состав	1300° C	кбар,
SiO ₂	54.1	50.3			1350° C
TiO ₂	0.5	0.7	Qtz		
AI_2O_3	11.0	17.1	Ort		•••
FeO	8.0	7.6	Ab		•••
MnO	-	-	→ An		
MgO	13.0	10.4	Di		
CaO	10.0	11.6	Onx	•••	•••
Na ₂ O	1.7	2.2	Oliv	•••	•••
K ₂ O	0.3	-	An	•••	•••
P_2O_5	-	-			•••
Ma#	0.75	0.73	. IIII МЛ+		• • •
wy#	0.75	0.73	IVIL	•••	•••
			Mg#	0.75	0.73

Проецирование составов природных стекол на плоскость OLIV – PLAG – SiO₂

При проецировании химических составов на тройные диаграммы, один из 4-х компонентов исключается (в данном случае CPx), а оставшиеся приводятся к 100%

Проецирование по методу (Green and Falloon, 1987)

Чем выше давление, тем меньше лерцолитовые котектики содержат SiO2 и больше нормативного OLIV

Область зарождения и эволюции первичных расплавов MORB – P < 15 кбар (*т.е. глубинам < 50 км*)

Современные данные о разнообразия базальтов срединно-океанических хребтов

Вариации общей щелочности более чем в 2 раза

Результаты "дискриминантного анализа" составов "толеитов океанических рифтов" (ТОР)

 $D = a(SiO_2) + b(TiO_2) + ... - c(Na_2O) - d(K_2O)$

MORB	TOP-1	TOP-2	TOP-	TOP-K	TOP-	TOP-
			Na		Fe	FeTi
ВТП (N=6273)						
SiO2	50.19	50.65	50.92	50.73	49.80	50.98
TiO2	1.14	1.63	2.22	1.84	1.30	2.56
AI2O3	15.88	15.01	14.28	15.79	15.09	13.30
FeO	9.19	10.33	11.80	9.69	12.21	13.79
MgO	8.55	7.55	6.38	6.95	7.70	5.77
CaO	12.52	11.81	10.79	11.04	11.49	10.17
Na2O	2.33	2.75	3.17	3.09	2.26	3.01
K2O	0.08	0.13	0.23	0.60	0.07	0.19
K/Ti	0.07	0.08	0.11	0.33	0.05	0.07
п	404	4700	486	338	8	337
%	6.4	74.9	8	5	0	5
		CAX (I	V=7788	3)		
SiO2	51.01	50.92	51.22	51.33	51.09	50.71
TiO2	1.08	1.52	2.06	1.65	1.35	1.94
AI2O3	15.40	15.49	15.14	15.71	14.14	13.41
FeO	9.57	9.94	10.65	9.40	12.34	14.28
MgO	8.20	7.65	6.60	7.09	7.04	6.04
CaO	12.34	11.46	10.62	11.26	11.78	10.94
Na2O	2.16	2.78	3.37	2.81	2.06	2.33
K2O	0.14	0.13	0.22	0.55	0.11	0.19
K/Ti	0.13	0.09	0.11	0.34	0.08	0.09
n	2342	3583	277	1074	399	113
%	30.1	46.0	3.6	13.8	5.1	1.5

Средние составы главных групп ТОР (Дмитриев, 2006)

 Устойчивость средних составов независимо от географического положения

• Разные пропорции в высоко- и низкоскоростных спрединговых центрах

Встречаемость главных типов ТОР

Восточно-Тихоокеанское поднятие (зона быстрого спрединга)

Северный сегмент САХ (медленный спрединг)

Параметры формирования первичных расплавов ТОР-1 и ТОР-2 (Соболев и др., 1984)

Состав	TOP-1	TOP-2	<u>Условия выплавления</u>
расплава	(Дмитриев	(Дмитриев	(<i>Кадик и др</i> ., 1991)
	<u>и др</u> ., 1984)	<i>и др</i> ., 1984)	Лерцолитовый источник
SiO ₂	49.32	49.70	Низкие содержания воды
TiO ₂	0.60	0.90	
Al_2O_3	15.10	18.00	ТОР-1: <i>Р</i> =10-15 кбар, <i>Т</i> =1300°С,
FeO	7.65	7.50	Ol+Opx+Cpx+Sp
MnO	0.20	0.20	
MgO	13.08	9.50	ТОР-2: <i>Р</i> =6-8 кбар <i>Т</i> =1250°С
CaO	12.38	11.90	
Na ₂ O	1.61	2.30	Οι+Ορχ+Ορχ+ΡιΞορ
K ₂ O	0.06	0.05	
P ₂ O ₅	-	-	
Ma#	0.75		

Выводы по поводу примитивных расплавов

1. Наиболее примитивные расплавы:

MgO - 9-15%, Mg# > 0.7, фенокристаллы Ol, Fo > 90

2. По результатам сопоставления природных составов с данными экспериментов:

Типичные MORB (MgO 5-8%) кристаллизовались при P < 5 кбар Первичные магмы этих MORB с MgO > 10% выплавлялись при P < 8-10 кбар

Признаки полибарической кристаллизации океанических толеитов

МИНЕРАЛОГИЧЕСКИЕ

ПЕТРОХИМИЧЕСКИЕ

 Присутствие мегакристаллов клинопироксена (Di составы, обогащение Cr)

P=8-10 кбар

 Высокоглиноземистые шпинели (Al2O3 <45%, Cr2O3=20%)
Р=5-6 кбар

> Соотношения CaO-MgO для серий MORB, различающихся по степени накопления FeO

Срх- важная котектическая фаза с ранних стадий фракционирования магм => фантомная кристаллизация пироксена

Особенности полибарического фракционирования толеитовых магм

Р-Т диаграмма магнезиального толеита (Bender et al., 1978)

> Эволюция состава расплава магнезиального толеита при фракционной кристаллизации при разных давлениях

Выбор объектов для ЭВМ-барометрии стекол MORB

Расположение скважин 332 и 418А в Северной Атлантике

Составы исходных магм из скв. 332 и 418А, использованные при моделировании полибарического фракционирования

Component	TOR-1 (Hole 332)	MB (Hole 418A)
SiO ₂	49.32	49.37
TiO ₂	0.60	1.12
Al_2O_3	15.10	15.02
FeO	7.65	9.77
MnO	0.20	0.19
MgO	13.08	10.61
CaO	12.38	11.72
Na ₂ O	1.61	1.99
K ₂ O	0.06	0.07
P_2O_5	-	0.13
FeO/MgO	0.585	0.921
CaO/Al ₂ O ₃	0.820	0.780

Составы приведены к 100 мас.%: TOP-1 - тугоплавкое включение в OI из скв. 332 (Дмитриев и др., 1984); МБ - магнезиальный базальт из скв. 418А (85-1, 145-148 - Init. Rep. DSDP, 1977)

Сопоставление расчетных и природных петрохимических трендов

Р-Т диаграмма исходной магмы для стекол из скважины 332

Р-Т диаграмма исходной магмы для стекол из скважины 418А

Модельные и природные петрохимические тренды