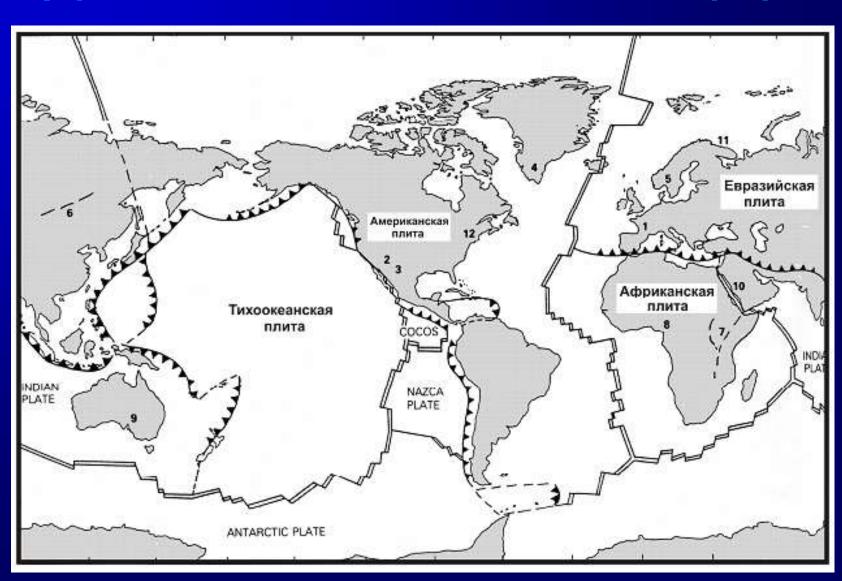
Общая тема:


РИФТОВЫЙ МАГМАТИЗМ КОНТИНЕНТОВ

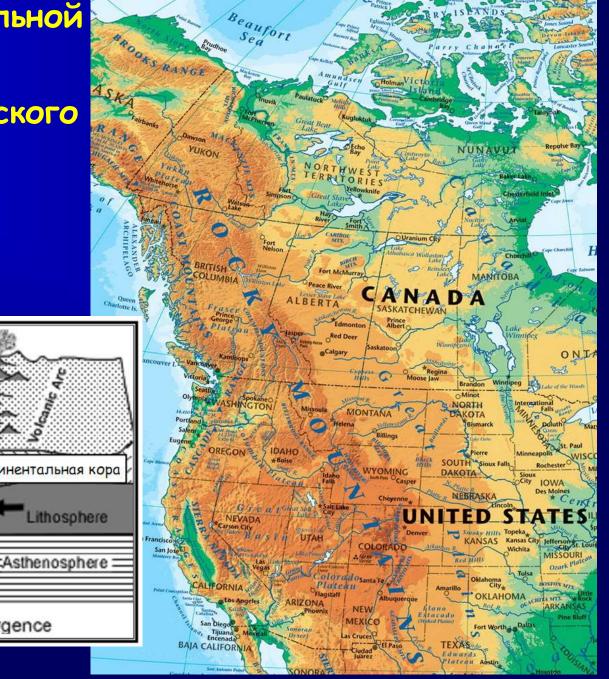
Лекция № 23

МАГМАТИЗМ ЭПИОРОГЕННЫХ РИФТОВЫХ ЗОН

Провинция Бассейнов и Хребтов
Рифт Рио-Гранде
Центральная Камчатская депрессия (Камчатка)

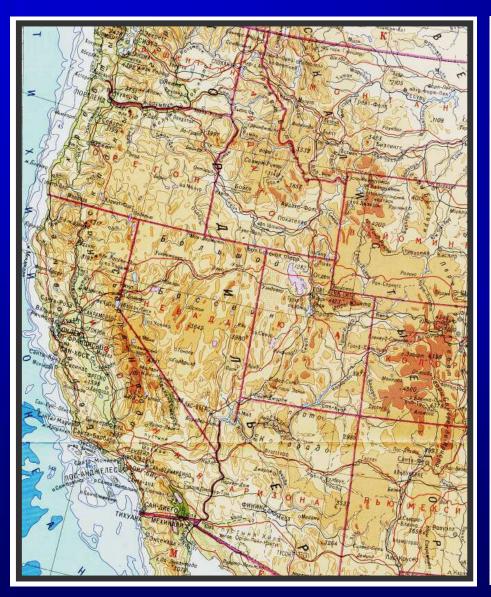
Мировая рифтовая система: внутриконтинентальные и океанические рифты

Строение континентальной окраины


Восточно-Тихоокеанского типа

Ocean - Continent Convergence

Океаническая кора


Lithosphere

Asthenosphere

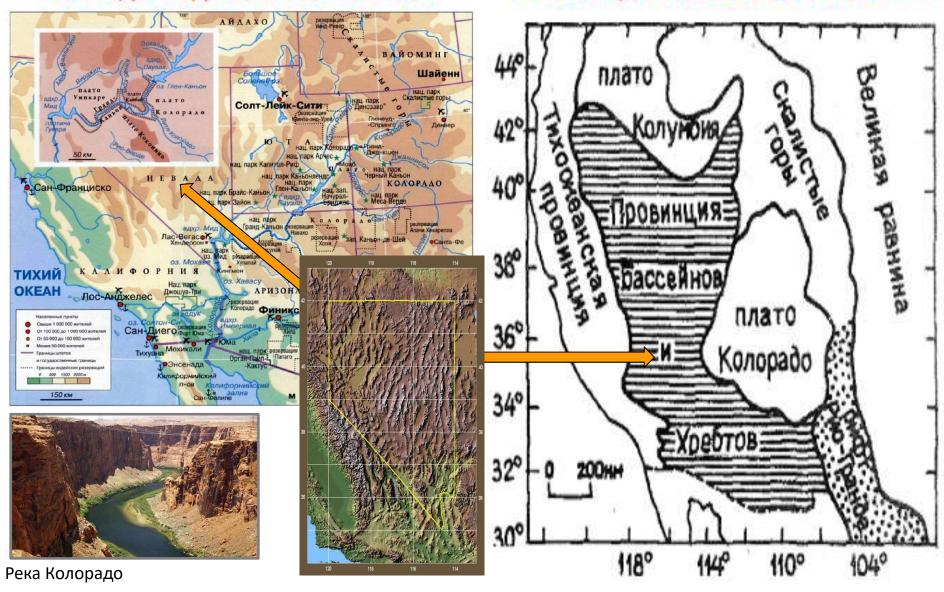
Запад США

Камчатка

Общие черты геологической эволюции эпиорогенных рифтовых зон

Эпиорогенные рифты развиваются совместно с орогенными структурами или возникают на заключительных этапах орогенеза.

Интенсивность сосуществующих орогенного и рифтогенного режимов может быть различной - от относительно слабых явлений рифтогенеза на фоне орогенного режима (*Андская окраина*) до появления долгоживущих рифтовых структур, одновременных с продолжающими развиваться орогенными (*Камчатка*, *Япония*).


В некоторых случаях рифтогенные процессы столь интенсивны, что почти полностью перерабатывают орогенные структуры подвижных поясов (запад США).

Для эпиорогенных рифтов характерен тот же активный цикл развития, что и для эпиплатформенных:

Проявления рифтогенеза предваряются орогенным поднятием с образованием крупного свода. Затем следует предрифтовый этап рассеянного (ареального) рифтогенеза на значительных площадях, который заканчивается формированием одного или нескольких крупных грабенов, где сосредоточено растяжение - это главный рифтовый этап.

ЗАПАД СОЕДИНЕННЫХ ШТАТОВ

ПРОВИНЦИЯ БАССЕЙНОВ И ХРЕБТОВ

Общие особенности магматизма эпиорогенных рифтовых зон

В зависимости от продолжительности орогенеза и рифтогенеза, рифтогенный магматизм оказывается различен:

- (1) в тех случаях, когда рифт наложен на затухающие или прекратившие свое развитие орогенные структуры, вулканическая деятельность приобретает подщелоченный характер.
- (2) в случае одновременного развития процессов орогенеза и рифтогенеза возможен смешанный тип магматизма, когда типично островодужные вулканиты сосуществуют с вулканитами, характерными для рифтовых структур.

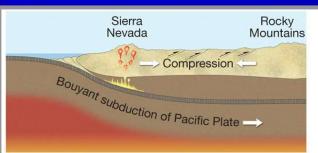
К подобным рифтовым зонам относится Центрально-Камчатская депрессия.

Главные типы магматических формаций эпиорогенных рифтовых зон

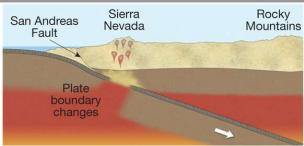
От формаций эпиплатформенных рифтов они отличаются незначительным развитием щелочных ассоциаций пород и значительным объемом кислых вулканитов.

От формаций островных дуг и внутриконтинентальных подвижных поясов - преобладанием субщелочных формаций, практически полным отсутствием известково-щелочных серий и более широким развитием контрастных ассоциаций.

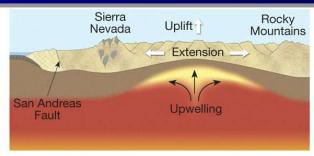
Если проследить эволюцию формационных рядов эпиорогенных рифтов в зависимости от времени, то она определенно связана с характером фундамента и мощностью земной коры.

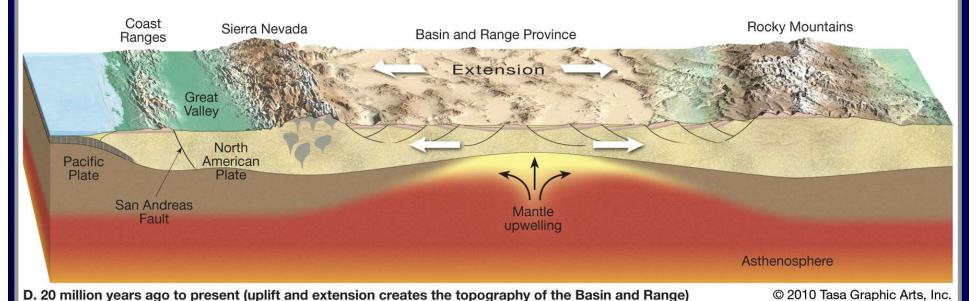

Прослеживаются также корреляции с интенсивностью предшествующего орогенеза и длительностью перерыва между орогенезом и рифтогенезом.

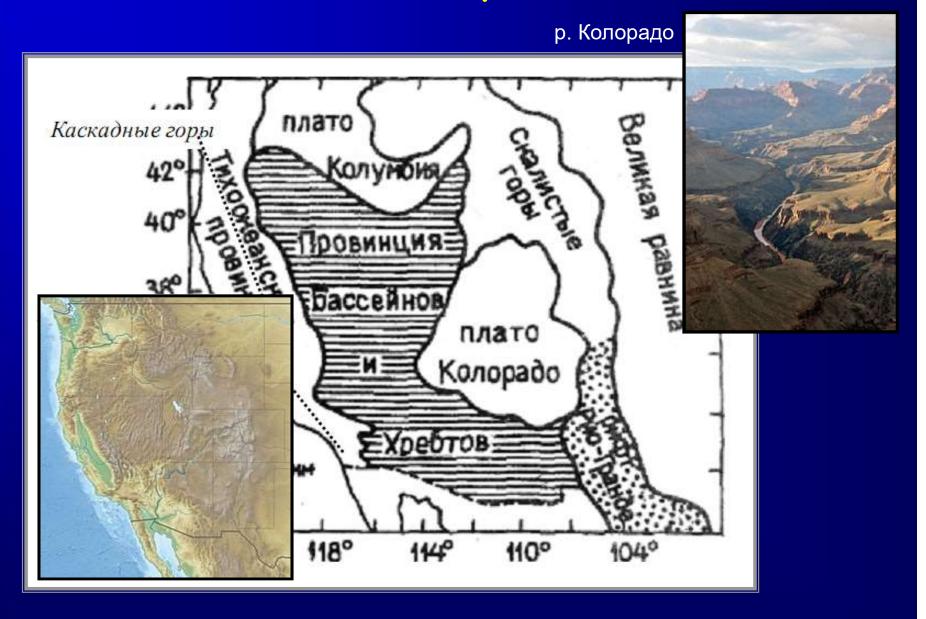
Explorer Ridge North Quaternary High Cascades American 52° Plate Oligocene and Miocene Western Cascades ML Meager **British Columbia** Mt. Cayley Mt. Garibaldi 50° Mt. Baker Washington Glacier Peak Idaho Mt. Rainler Juan de Mt. Adams Walla Walls **Fuca** Present Subduction Zone Plate Mt. Hood System Oregon Mt. Jefferson 44° **Pacific** Gorda Ridge Plate Crater Lake Mt. McLaughlin 42° (20) Medicine Lake Mt. Shasta Nevada 100 200 km California

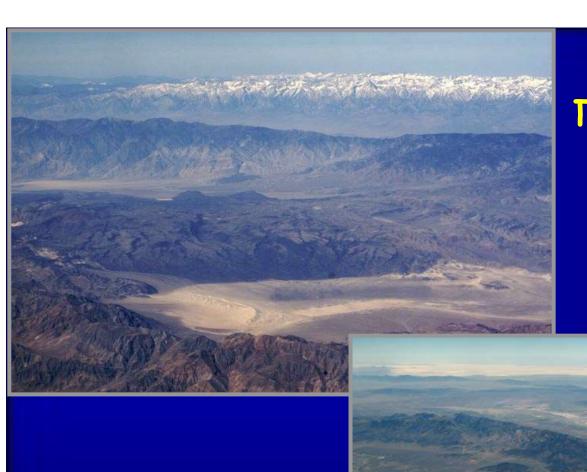

Красными стрелками показано формирование начальной зоны растяжения в пределах Провинции Бассейнов и Хребтов

Континентальная дуга Каскадных гор и субдукция плиты Хуан-де-Фука


Тектоническая эволюция Провинции Бассейнов и Хребтов


A. 40 million years ago (compressional forces dominate)


B. 30 million years ago (change from a convergent to transform boundary)



C. 20 million years ago (uplift and extension of the crust)

Схема тектонического строения запада США

Морфология Провинции Бассейнов и Хребтов

Эволюция магматизма ПБХ

Позднекайнозойский рифтовый магматизм начался в этой провинции примерно 30 млн. лет назад (*граница палеогена и неогена*), когда формировались непрерывные серии от трахиандезитов до калиевых латитов.

Затем (с 24 млн. лет – начало неогена) "пошли" контрастные (бимодальные) ассоциации, включающие субщелочные базальты и трахириолиты.

Отметим, что общий объем кислых вулканитов на западе США достигает 230 тыс. км³, причем максимум приходится как раз на Провинцию Бассейнов и Хребтов.

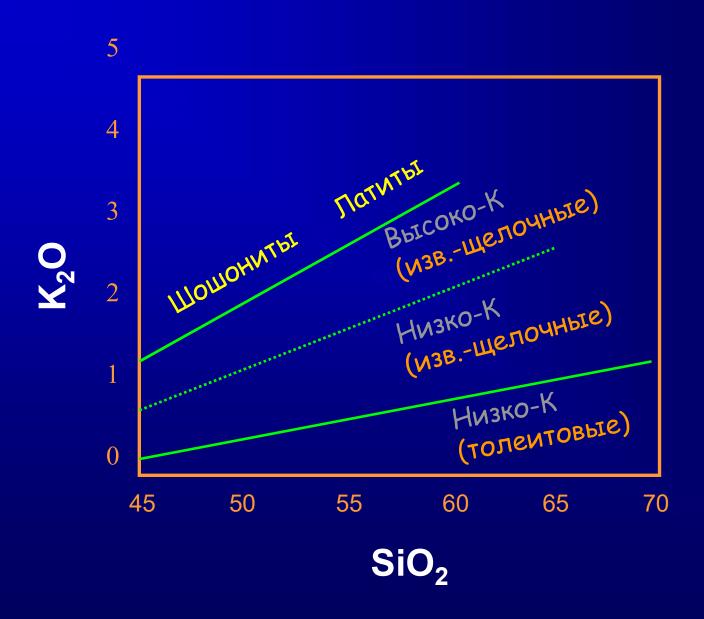
Что такое "латиты"?

ЛАТИТ (по названию др.-рим. обл. Латиум, ныне Лацио, в Италии), вулканическая горная порода среднего состава субщелочного ряда; излившийся аналог


МОНЦОНИТа. Название предложил амер. учёный Ф. Л. Рансом (1898) при описании вулканич. пород Сьерры-Невады (штат Калифорния, США).

Цвет от светло-серого до тёмного зеленовато-серого. Структура обычно порфировая, реже равномерно зернистая; текстура массивная.

Вкрапленники составляют от 5 до 50% по объёму. Гл. минералы вкрапленников: плагиоклаз и кпш (примерно в равных количествах) и моноклинный пироксен (авгит), реже амфибол (роговая обманка), биотит.


Что такое "латиты"?

SiO Maa	Высоко-К андезит	Латит	
SiO ₂ , mac			
TiO ₂	58.32	58.74	
Al_2O_3	0.83	0.64	
Fe ₂ O ₃ tot	16.12	17.43	
MnO	5.30	4.74	
MgO	0.12	0.07	
CaO	3.53	2.37	
	4.99	2.41	
Na ₂ O	5.12	6.39	
K_2O	3.42	4.70	
P_2O_5	0.44	0.41	
П.п.п.	1.73	1.57	
Сумма	99.91	99.46	

Из второстепенных минералов постоянно присутствуют магнетит, апатит, реже ромбический пироксен, кварц, титанит. В основной массе распространены те же минералы, что и во вкрапленниках (преим. плагиоклаз, калиево-натриевый полевой шпат, моноклинный пироксен, биотит, магнетит, апатит, титанит), и вулканическое стекло.

Вторичные минералы представлены хлоритом, вторичным магнетитом, альбитом, реже серпентином.

Шошонит - латитовые серии

Игнимбримты штата Невада в ПБХ

Игнимбриты шт. Невада покрывают площадь около 150 тыс кв. км, и их общая мощность местами достигает 1000 м. Отдельные залежи этих пород имеют мощность 60 м; иногда они прослеживаются на значительные расстояния — до 150 км.

Игнимбримты штата Невада в ПБХ

Что такое "игнимбриты"?

Игнимбриты – отложения палящих туч

(от лат. *ignis* - огонь и *imber*, родительный падеж *imbris* - дождь)

Обломки игнимбритов оплавлены, пластично деформированы и растянуты – так наз. фьямме(от (итал. fiamme, мн.ч.от fiamma - пламя).

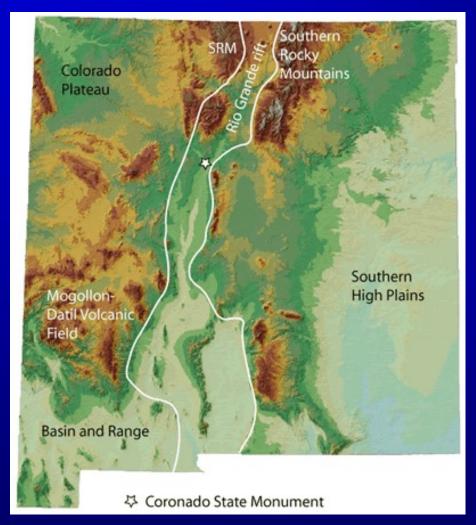
По механизму образования - вулканогенно- обломочные породы

По составу различают:

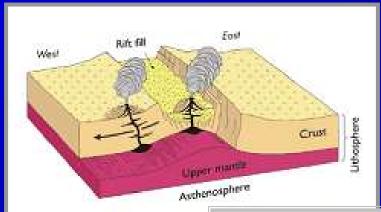
Риолитовые Дацитовые Трахитовые Андезитовые

Игнибритовые поля Snake River (запад США)

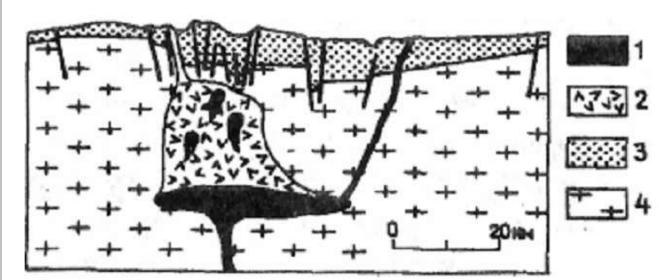
Игнибритовые поля Snake River и Йеллоустоновского парка США



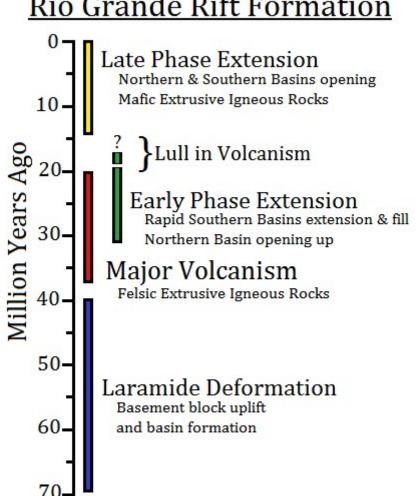

Рифтовая зона Рио-Гранде



Рифтовая зона Рио-Гранде



Разрез рифтовой зоны Рио-Гранде


The graphic above de of a rift, image courte

1 – магматические камеры (внизу базальтовая интрузия, выше – коровые очаги); 2 – область плавления коровых пород; 3 – верхняя кора (осадочный материал и вулканические формации); 4 – докебрийский кристаллический фундамент

Три главных формации рифта Рио-Гранде

Generalized Timeline of Rio Grande Rift Formation

- **(1)** базальтовая,
- (2) дифференцированная базальт-трахиандезиттрахириолитовая (латитовая)

и наиболее распространенная

(3) контрастная субщелочная базальттрахидацитовая и базальттрахириолитовая

Общие особенности магматизма запада США

- (1) развитие на гетерогенном основании, представленном мезокайнозойским подвижным поясом и активизированной краевой частью древней платформы;
- (2) преобладанием контрастных типов формаций и обилием кислых пород, преимущественно подщелоченных (антидромная тенденция);
- (3) сильными вариациями по щелочности, хотя собственно щелочных пород очень мало.

Вещественный состав основных пород

В группе основных пород, представленных базальтами, трахибазальтами и шошонитами, выделяются лейкократовые и меланократовые разности.

Для первых наиболее обильным минералом вкрапленников является PI, а в более щелочных породах появляется калиевый полевой шпат.

Парагенезисы меланократовых базальтов отличаются широким развитием темноцветных минералов: оливина, клинопироксена и амфибола, а в высококалиевых разностях - флогопита. Здесь отмечается наиболее магнезиальный оливин - Fo 82-89.

Титаномагнетит и ильменит образуют мелкие вкрапленники и широко развиты в основной массе, где в породах повышенной щелочности встречаются еще и фельдшпатоиды.

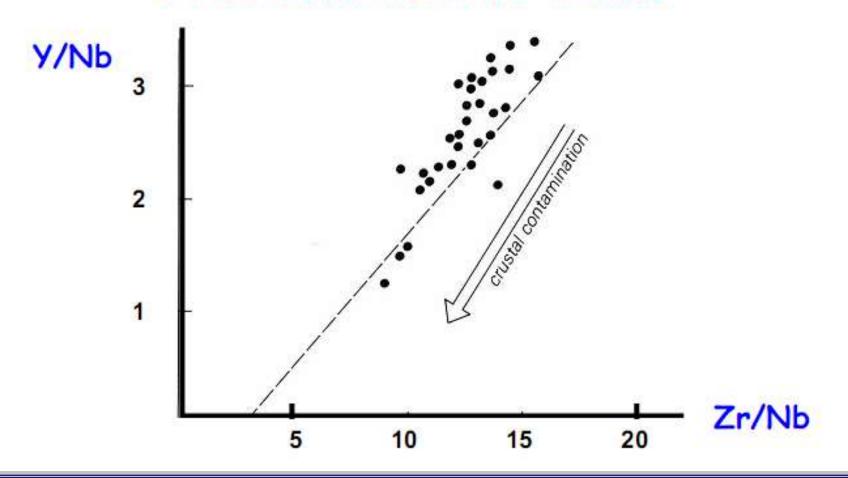
Вещественный состав кислых пород

Группа кислых пород разнообразна. Преобладают игнимбриты и туфы риодацитового, риолитового и трахириолитового составов, которые образуют покровы и плато.

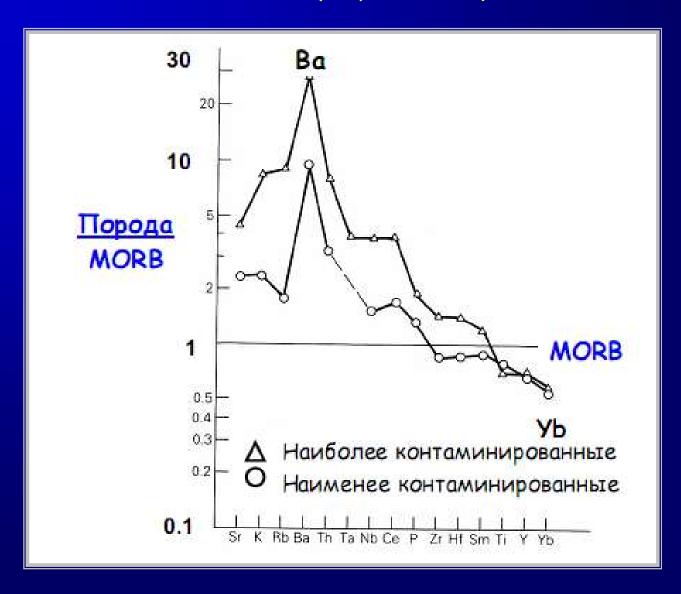
Риолиты и комендиты часто слагают экструзивные купола, штоки и другие мелкие тела, которые характеризуются невысоким процентом вкрапленников и повышенным содержанием акцессориев - апатита, циркона и ортита.

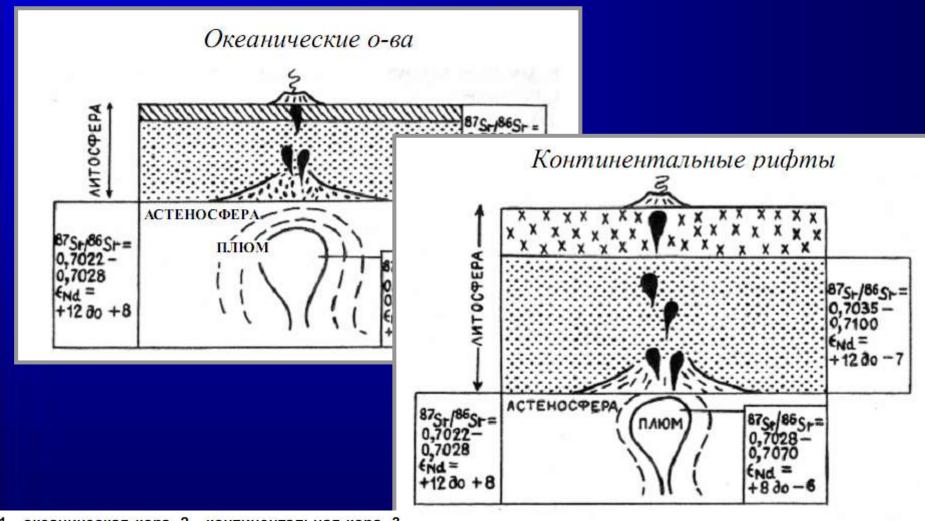
Орх в породах эпиорогенных рифтов редок, зато клинопироксены и амфиболы обогащены Са, Ті и щелочами. В основной массе субщелочных пород характерно появление фельдшпатоидов.

Перечисленные признаки сближают вулканиты эпиорогенных рифтов с породами эпиплатформенных рифтовых зон.


Петрохимические особенности пород

Оксиды	Базальт	Гавайит	Муджиерит	Ne-сиенит	Сиенит	Комендит
SiO ₂	45.53	47.09	52.71	58.02	64.08	72.32
TiO ₂	2.60	2.75	1.93	0.20	0.41	0.16
Al ₂ O ₃	16.06	16.28	16.79	18.19	16.59	12.98
Fe ₂ O ₃	2.84	4.83	4.70	3.61	3.18	2.16
FeO	7.36	6.93	3.80	2.03	0.97	1.17
MnO	0.17	0.18	0.17	0.27	0.16	0.12
MgO	7.41	4.76	2.49	0.21	0.28	0.08
CaO	9.63	7.62	5.30	1.50	1.11	0.29
Na ₂ O	4.11	4.04	4.93	7.99	6.17	5.22
K ₂ O	2.74	1.82	3.44	5.15	5.30	4.71
H ₂ O	0.78	1.03	1.30	0.12	0.14	0.03


Диаграмма K2O-SiO2 для вулканического плато Таоs $(ри\phi \ T \ Puo-Гранде)$



Признаки контаминации в вулканических породах плато Taos (риф т Рио-Гранде)

Сравнение изотопных характеристик мантийных резервуаров

1 - океаническая кора, 2 - континентальная кора, 3 - субокеаническая и субконтинентальная мантия соответственно, 4 - поднимающийся мантийный расплав

Общие выводы о рифтах - континентальных и океанических

- (1) Главной причиной рифтогенного магматизма является поднятие мантийных диапиров, сопровождающееся плавлением астеносферы, раскалыванием коры и излияниями разнообразных магм.
- (2) Химический состав рифтогенных вулканитов определяется химической и минералогической гетерогенностью мантии, степенью плавления источника и скоростью подъема диапиров к поверхности.
- (3) Мантийные источники в рифтовых зонах, как правило, относятся к типу обогащенных, часто предварительно испытавших интенсивный метасоматоз (калиевые серии).
- (4) Щелочные серии рифтогенных зон несут признаки фракционирования первичных мантийных магм.
- (5) Кислые и салические породы контрастных серий характеризуются значительной ролью корового магматизма самостоятельного или смешанного с мантийным. Это принципиально отличает магматизм континентальных рифтов от океанических.