Общая тема: АКТИВНЫЕ ОКРАИНЫ КОНТИНЕНТОВ

Лекция № 25

Природа магматизма и происхождение андезит-базальтовых серий и толеитов островных дуг

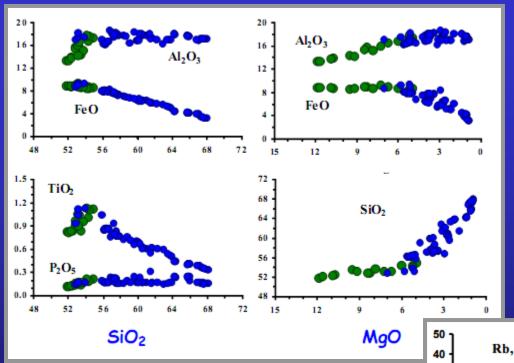
(на примере Восточной Камчатки)

КРИСТАЛЛИЗАЦИОННЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ИЗВЕСТКОВО-ЩЕЛОЧНЫХ СЕРИЙ КАМЧАТКИ

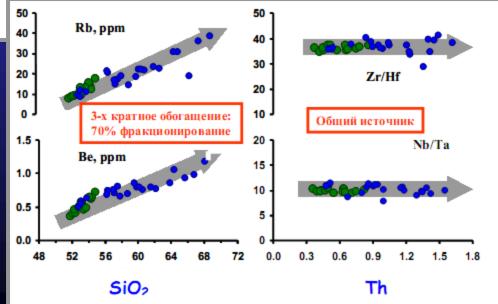
Рассмотрим следующие вопросы...

- 1. Высокоглиноземистые базальты и гиперстеновые серии
- 2. Значение высокомагнезиальных базальтов
- 3. Роль "мантийного клина"
- 4. Летучие как главный фактор магмообразования
- 5. Роль воды в образовании высоко-АІ магм
- 6. Формирование андезит-базальтовых серий (на примере лав влк. Безымянный)

Высокоглиноземистый базальт и гиперстеновые серии

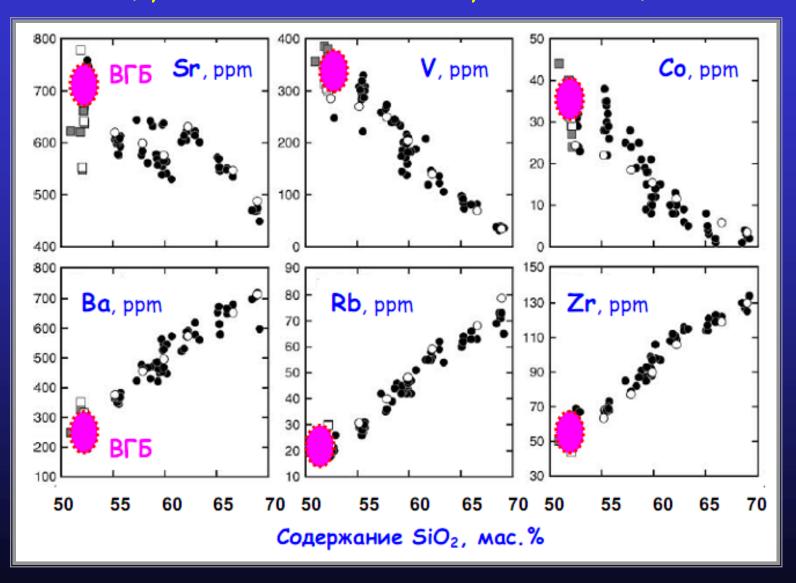

Породы этого типа характеризуются высоким содержанием глинозема (> 18 мас.% Al_2O_3) и присутствием OPX в основной массе.

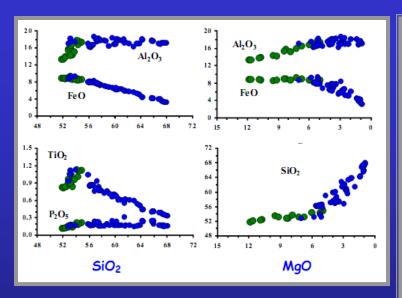
Куно (Kuno, 1960) объединил высокоглиноземистые базальты и продукты их фракционирования в гиперственовую серию, которая позднее была признана аналогом известково-щелочной серии.

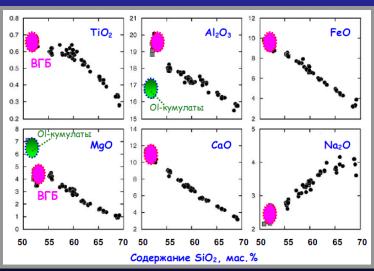

Альтернативой подобным ассоциациям являются базальты пижонитовой серии, в основной массе которых присутствует Pig – "островодужные толеиты".

Куно утверждал, что породы гиперстеновых серий являются продуктами кристаллизации высокоглиноземистой магмы, которую можно рассматривать как исходную для любых известково-щелочных ассоциаций пород.

Пример "полной" известково-щелочной серии


РАСПРЕДЕЛЕНИЕ ГЛАВНЫХ И ПРИМЕСНЫХ ЭЛЕМЕНТОВ В ИЗВЕСТКОВО-ЩЕЛОЧНОЙ СЕРИИ ВУЛКАНОВ КЛЮЧЕВСКОЙ (•) И БЕЗЫМЯННЫЙ (•)


Данные Р.Р. Альмеева (2005)


Типичная известково-щелочная серия

(вулкан Салина, Эоловая дуга, Сицилия)

Значение высокомагнезиальных базальтов

ПРИМЕРЫ АССОЦИАЦИЙ ВЫСОКОМАГНЕЗИАЛЬНЫХ И ВЫСОКОГЛИНОЗЕМИСТЫХ БАЗАЛЬТОВ

	Алеутская дуга		Марианская дуга		Влк. Ключевской	
оксиды	Высоко-	Высоко-	Высоко-	Высоко-	Высоко-	Высоко-
	Mg	Αl	Mg	Al	Mg	Al
SiO₂	48.50	50.13	48.83	50.15	51.76	53.50
TiO ₂	0.75	0.97	0.69	0.81	0.86	1.09
Al ₂ O ₃	14.83	19.34	15.21	19.34	13.86	18.26
FeO	9.54	9.03	9.75	9.34	8.83	8.67
MnO	0.17	0.17	0.24	0.16	0.17	0.16
MgO	11.67	5.00	10.11	4.51	11.55	5.24
CaO	11.18	10.51	12.17	11,11	9.73	8.22
Na₂O	2.04	2.88	1.68	2.47	2.47	3.45
K₂O	0.65	0.71	0.58	0.72	0.63	1.20
P ₂ O ₅	0.15	0.18	0.10	0.15	0.15	0.20

Гипотеза плавления "мантийного клина"

В – разложение флогопита

(Tatsumi, 1989)

Плавление мантийного вещества на глубинах около 100 км вблизи верхнего контакта погружающейся плиты могло привести к формированию высоко-Мд магм, которые явились исходными для менее примитивных высоко-Al расплавов.

200

segregation

depth (km)

100

200

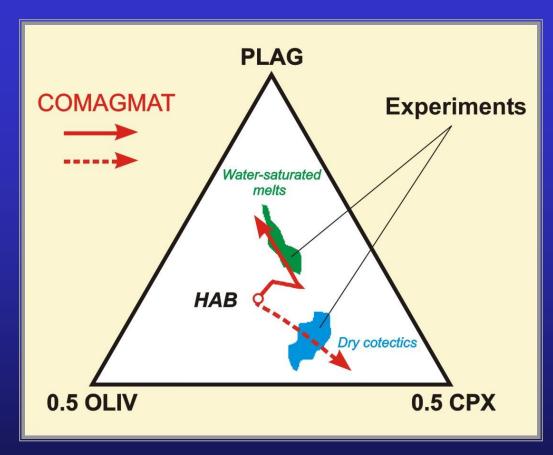
secondary

chain

differentation

Присутствие летучих как главный фактор магмообразования

Именно поступление "летучих" компоненты из океанической плиты способствует зарождению долгоживущих областей плавления мантийного клина.

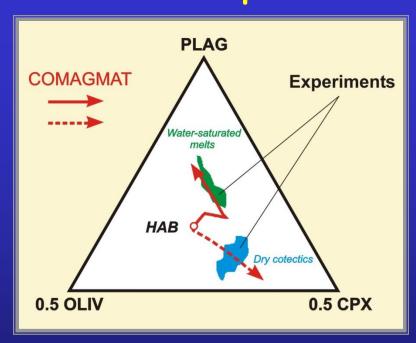

В пределах этих зон идет генерация первичных магм высоко-Mg базальтов, последующее фракционирование которых приводит к образованию дифференциатов высокоглиноземистого состава.

Эти обогащенные Al₂O₃ производные магмы и более кислые продукты их кристаллизации достигают верхних горизонтов коры и извергаются на вулканах субдукционных зон.

А вот **исходные высоко-Мg расплавы – редкий гость на поверхности.** По-видимому, они практически нацело фракционируют при подъеме с глубин магмогенерации.

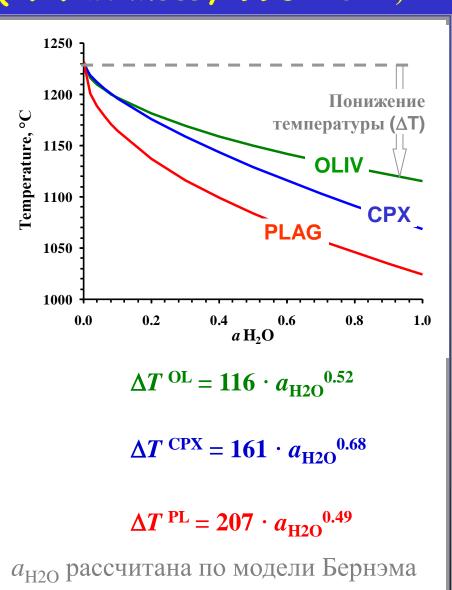
"Память" о мантийной предыстории несут лишь отдельные фенокристы и микровключения высоко-Мg оливинов, пироксенов и Cr-шпинели, а также геохимические соотношения малоподвижных элементов (РЗЭ) и изотопная систематика пород.

Роль воды в образовании высоко-АІ магм

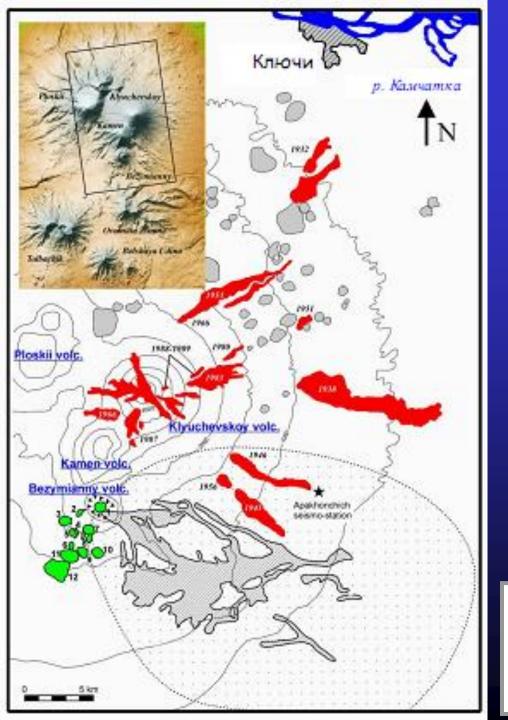


Проекция составов расплавов на диаграмму OLIV-PLAG-CPX

Две модельные линии - результаты расчетов равновесной кристаллизации высокоглиноземистого базальта в "сухих" и "водных" условиях (при Р=2 кбар).


Эволюция "сухих" расплавов приводит в поле обедненных Al_2O_3 котектик; "водный тренд" направлен в область высоко-AI и водонасыщенных систем.

Экспериментальные исследования водосодержащих базальтовых расплавов (Р.Р. Альмеев, 1996-2011)


Добавление воды понижает температуру кристаллизации *PI* значительно сильнее, чем для оливина и пироксенов.

Это понижение составляет порядка 50-100°C на 1% растворенной в расплаве воды.

Вулканы Ключевской, Безымянный и Камень

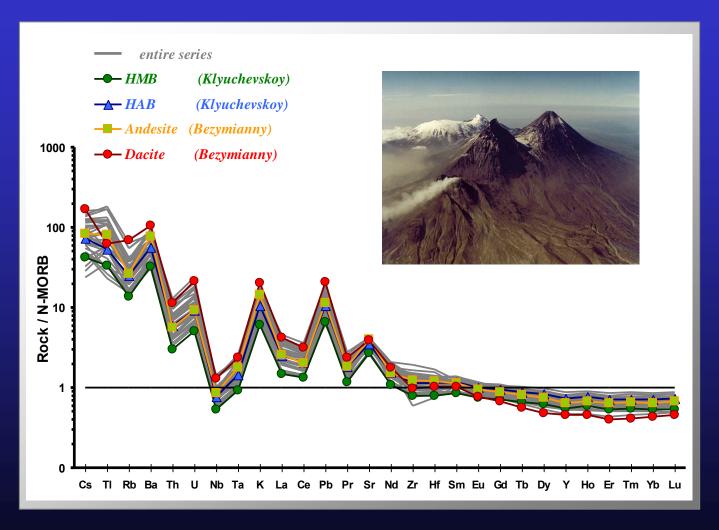
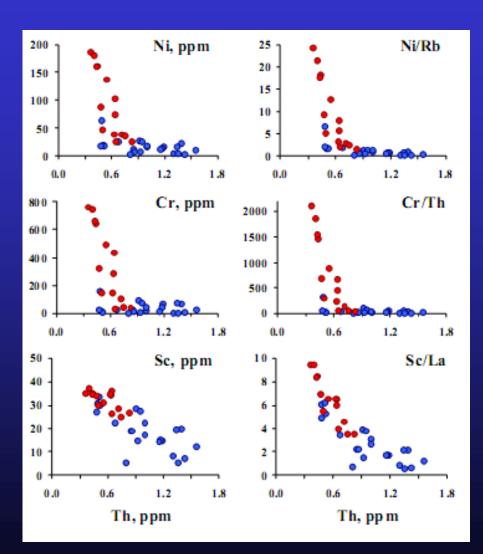
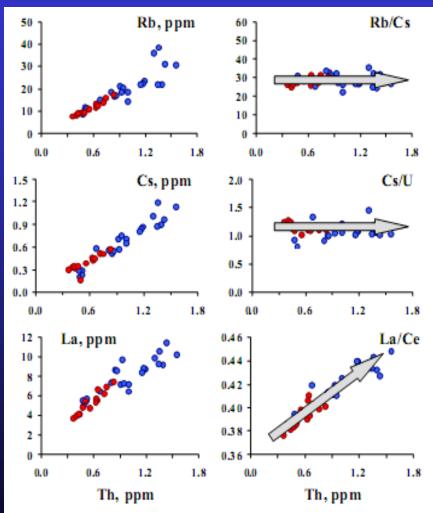
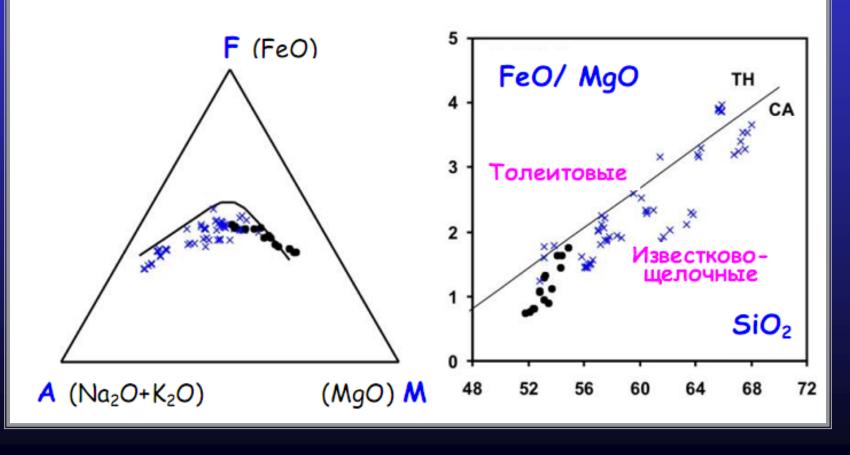


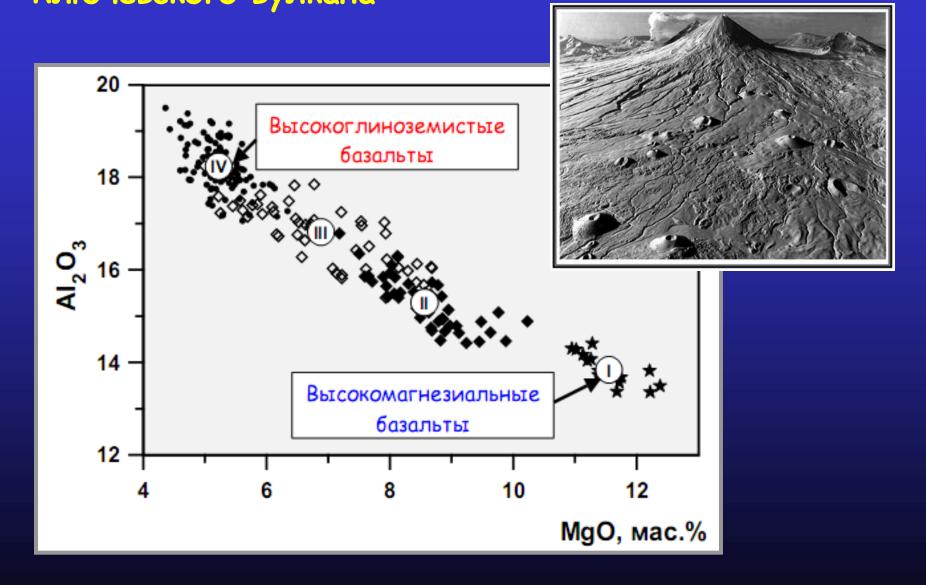
Схема извержений влк. Ключевской и Безымянный


- 1 кальдера влк, Безымянный, 2 побочные прорывы,
- 3 паразитические конуса, 4 экструзивные купола,
- 5 пирокластический поток 1956 г., 6 отложения 1956 г.

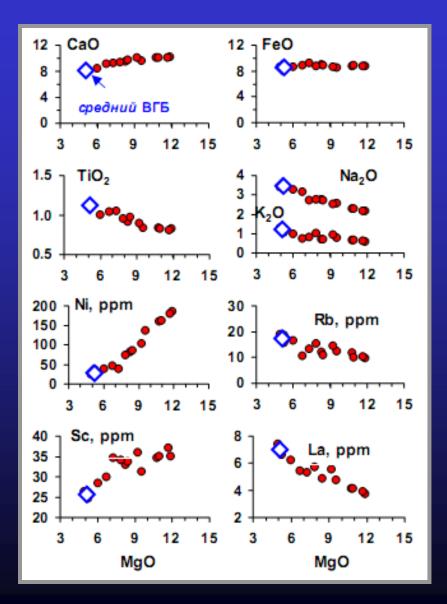

СПАЙДЕРГРАММА БАЗАЛЬТОВ И АНДЕЗИТОВ ВУЛКАНОВ КЛЮЧЕВСКОЙ И БЕЗЫМЯННЫЙ

Примеры трендов фракционирования исходной магмы вулканов Ключевской и Безымянный

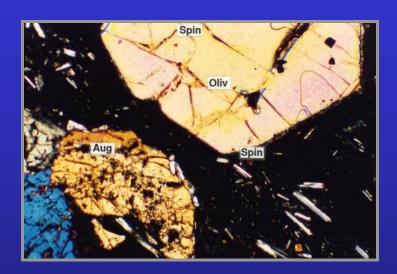



Известково-щелочная серия вулканов Ключевской и Безымянный

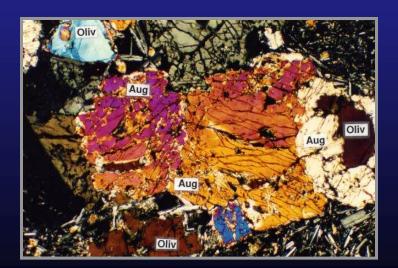
СОСТАВЫ ПОРОД ИЗВЕСТКОВО-ЩЕЛОЧНЫХ СЕРИЙ НА ДИСКРИМИНАЦИОННЫХ ДИАГРАММАХ


(на примере лав вулканов Ключевской и Безымянный)

Эволюция содержаний MgO и Al₂O₃ в базальтах Ключевского вулкана

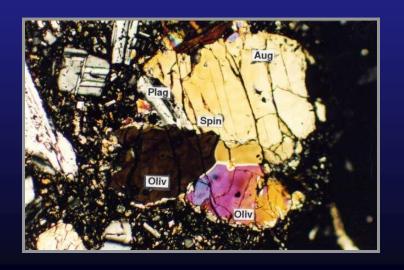


Химический и нормативный состав базальтов Ключевского вулкана

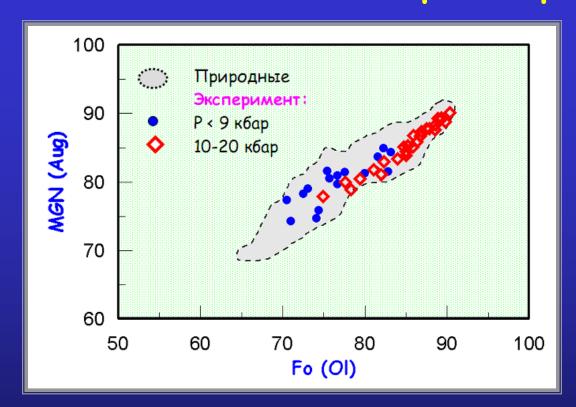


Тип	Высоко-Мд	Магнези - альный	Глинозе- мистый	Высоко-АІ				
	(I)	(II)	(III)	(IV)				
n	15	46	50	131				
SiO ₂	51.76	53,39	53,22	53,50				
TiO₂	0.86	0.84	0.95	1.09				
Al ₂ O ₃	13,86	15,29	16.79	18,26				
FeO	8.83	8,52	8.83	8.67				
MnO	0,17	0.17	0,17	0.16				
MgO	11,55	8,58	6.89	5,24				
CaO	9.73	9.41	8,91	8,22				
Na₂O	2,47	2,72	3,11	3,45				
K₂O	0.63	0.90	0.96	1,20				
P ₂ O ₅	0,15	0.18	0,18	0,20				
Mg/(Mg+Fe)	0.699	0.641	0,580	0.517				
Ca/(Ca+Al)	0,561	0.528	0.491	0.450				
CIPW, Mac.%								
Or	3,72	5,32	5.67	7.09				
Ab	20,90	23,01	26,31	29,19				
An	24,88	26,86	29,02	30,80				
Di	18,18	15,24	11,54	7,20				
Hy	17.93	25,04	21,96	21,15				
OI	12,42	2,52	3,28	2,02				
Ilm	1.63	1,60	1,80	2,07				
Ap	0.36	0,43	0,43	0,47				

Структуры высоко-Mg и высоко-Al базальтов Ключевского вулкана



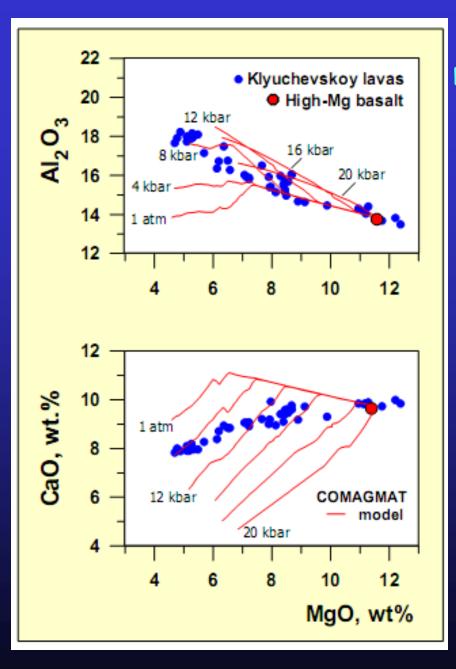
Высокомагнезиальные базальты



Aug (Aug (

Высокоглиноземистые базальты

Эволюция составов породообразующих минералов


Составы природных и экспериментальных OI и Срх

Последовательность кристаллизации ключевских магм

$$\mathbf{Ol} (Fo_{90}) + \mathbf{Aug} (mg\#_{90}) \pm \mathbf{Cr} - \mathbf{Sp} \Rightarrow$$

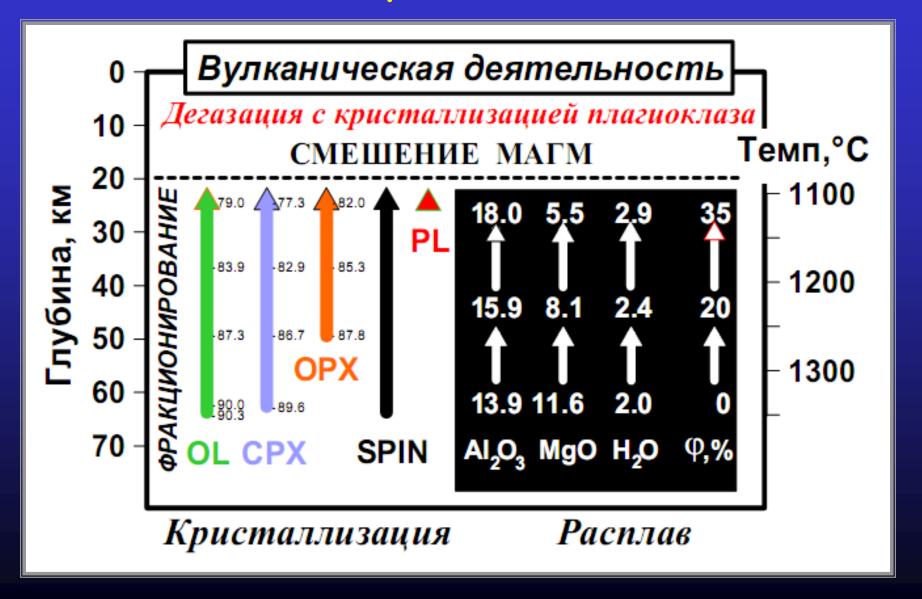
$$\mathbf{Ol} (Fo_{86}) + \mathbf{Aug} (mg\#_{87}) \pm \mathbf{Opx} (mg\#_{87}) \pm \mathbf{Cr} - \mathbf{Sp} \Rightarrow$$

$$\mathbf{Ol} (Fo_{76}) + \mathbf{Aug} (mg\#_{79}) + \mathbf{OPx} (mg\#_{78}) + \mathbf{Sp} + \mathbf{Pl} (An_{65-77})$$

Численное моделирование изобарической фракционной кристаллизации расплава высоко-Мд базальта при разных давлениях

Природный петрохимический тренд пересекает модельные линии изобарической кристаллизации исходного расплава в интервале давлений 1 атм — 20 кбар

Оптимальная модель декомпрессионного фракционирования


Переход высоко-Mg в высоко-Al базальты отвечает ~40% фракционированию ассоциации Ol-Aug-Sp в интервале давлений от 19 до 7 кбар.

При этом температура магмы понижалась от 1350 до 1100°C.

Содержание воды в исходном расплаве составляло 2 мас.%.

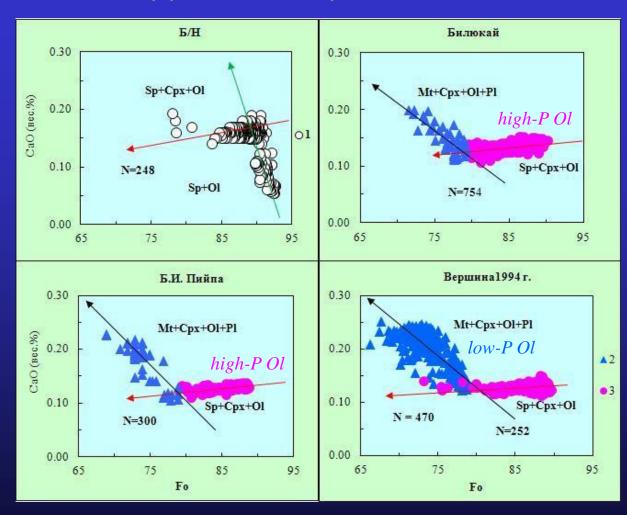
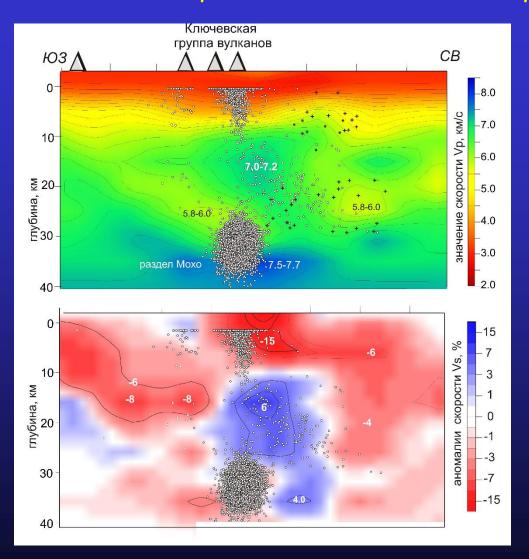

Накопление воды в расплаве по мере кристаллизации привело к значительной задержке кристаллизации PI и образованию высокоглиноземистых дифференциатов, содержащих > 18 мас.% AI₂O₃

Схема химической и фазовой эволюции магматизма Ключевского вулкана (Озеров и др., 1996)

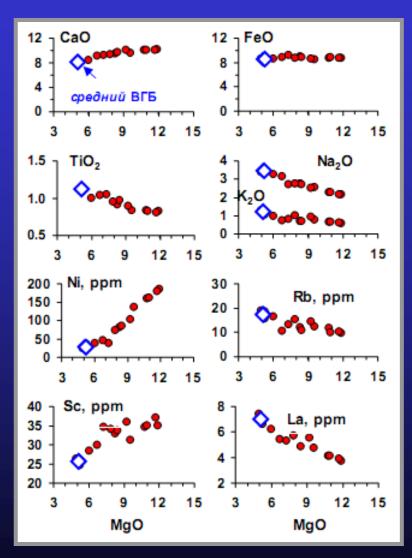

Са в ключевских оливинах - как свидетельство полибарического фракционирования !?

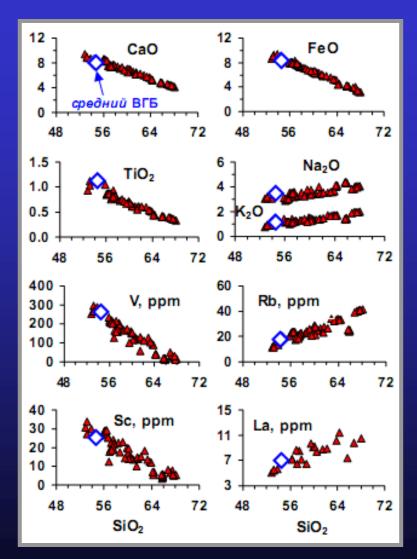
- Исследовано несколько тысяч составов ОІ и Срх из магнезиальных и высоко-АІ базальтов влк. Ключевской.
- Бимодальность распределения СаО в OI указывает на внедрение магнезиальной магмы из глубинного очага в малоглубинную "высокоглиноземистую" камеру.
- Петрологические данные находятся в соответствии с сейсмическим данными о строении земной коры под вулканами.

С.А. Хубуная, Л.И. Гонтовая, А.В. Соболев, В.С. Хубуная «К вопросу о магматических очагах под вулканом Ключевской (Камчатка). Вулканология и сейсмология, N 2, 2018 г.

Вертикальный разрез земной коры в аномалиях Vp и Vs под Ключевской группой вулканов

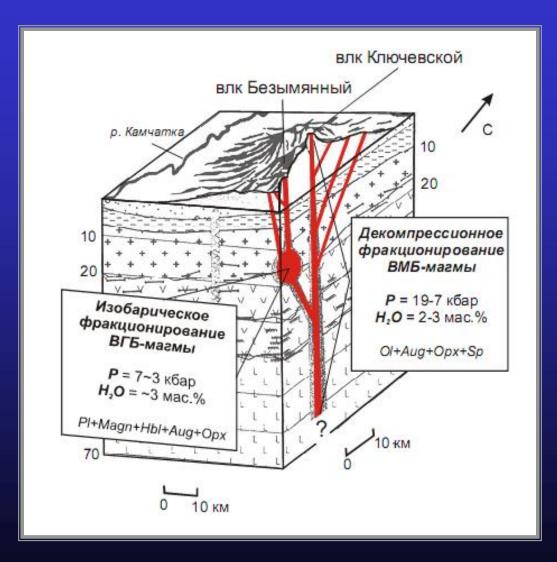
Изолинии абсолютных значений сейсмических скоростей и (кружками) гипоцентры вулканотектонических землетрясений


С.А. Хубуная, Л.И. Гонтовая, А.В. Соболев, В.С. Хубуная «К вопросу о магматических очагах под вулканом Ключевской (Камчатка). Вулканология и сейсмология, № 2, 2018 г.


Эволюция магматизма вулкана Безымянный

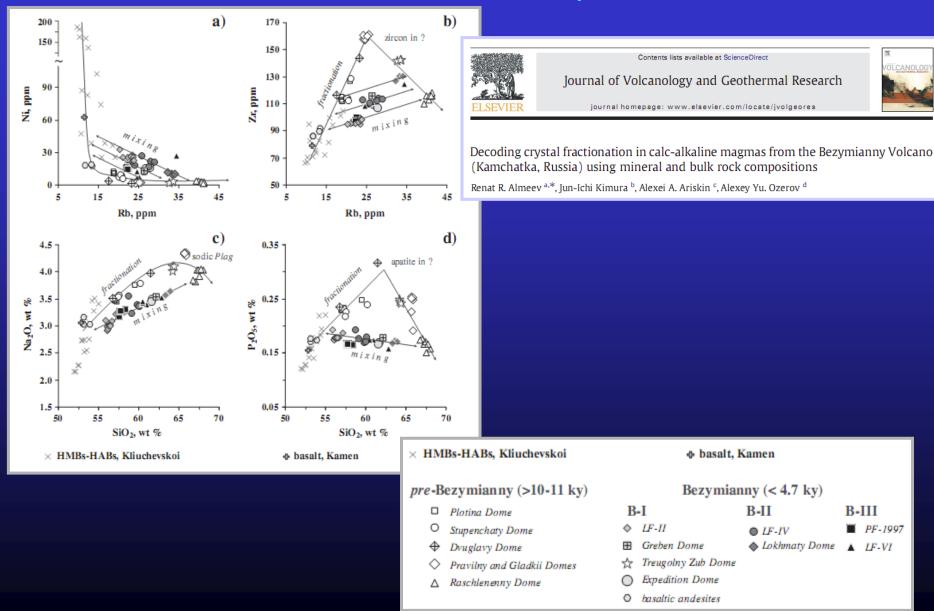
Общий вид вулкана Безымянный

Вариации химического состава базальтов Ключевского и лав вулкана Безымянный



Влк. Ключевской

Влк. Безымянный


Гипотетическая схема питания вулканов Ключевской и Безымянный

Высокоглиноземистые магмы как продукты фракционирования мантийного источника ключевских магм являются родительскими для более кислых андезитов вулкана Безымянный.

По Озерову и Альмееву с дополнениями (1995)

Вариации химического состава вулканитов Ключевского Безымянного – признаки смешения

ОБЩИЕ ВЫВОДЫ О ПРИРОДЕ андезит-базальтового магматизма островных дуг

Высокие содержания H₂O в исходных магмах

- > эксплозивность извержений
- > атр фенокристы
- > высокая глиноземистость выплавок
- > связь с f_{O2} ранняя кристаллизация Ti-Mt
- **ИЩ тренды** результат фракционной кристаллизации высоко-Mg и высоко-Al магм
- Высокие LILE/HFSE плавление в условиях "мантийного клина" (надсубдукционной мантии)
- **10Ве, В** присутствие "субдукционного компонента"
- Поперечная зональность связь с глубиной очага + снижение степени плавления (от желоба)

ВКЛЮЧЕНИЯ КРИСТАЛЛИЧЕСКИХ ПОРОД В ВУЛКАНИТАХ КУРИЛО-КАМЧАТСКОЙ ОСТРОВНОЙ ДУГИ

Гомеогенные (родственные) включения

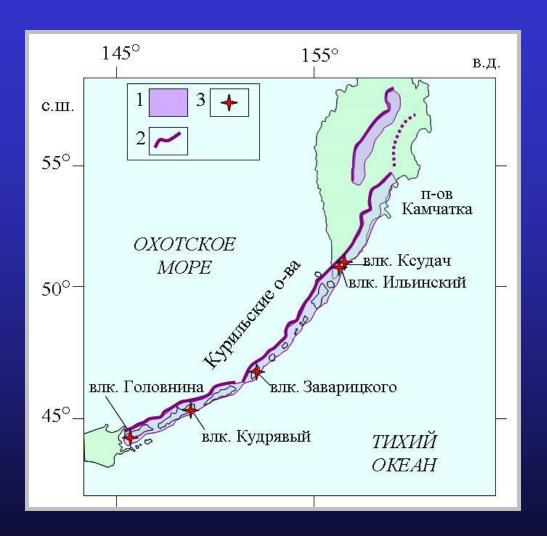
По составу делятся на:

 \cdot алливалиты-эвкриты - в низкокалиевых толеитах Fo_{80-82} + An_{82-95} + Cr-sp + Aug_{85-90} \pm (Ti-Mt, Amph)

• верлит-кортландит-пироксенит-габбро - ИЩ и СЩ $Ol + Ca - aug + An_{50-85} + Amph + Sp (Cr-mt, Ti-mt)$

Причины различий - разница в Р_{Н2О}

Гомеогенные (родственные) включения


Алливалит, Камчатка

Алливалит, о.Рам

- Алливалиты
 - оливин анортитовые крупнозернистые породы, обнаруженные в виде включений в изверженных породах многих вулканов Камчатки
- Название предложено Заварицким по аналогии с оливинплагиоклазовой разновидностью троктолитов в основном расслоенном интрузиве на о. Рам (Шотландия) по г. Халливал

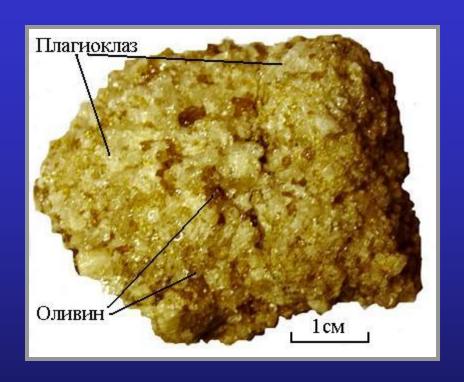
Вулканы, на которых были обнаружены алливалиты

Алливалит в игнимбрите влк. Карымский (Камчатка)

Алливалитовые включения на влк. Желтовский (южная Камчатка)

Вулканы, на которых были обнаружены алливалиты

Ильинский (Камчатка)


Головнина (о. Кунашир)

Ксудач (Камчатка)

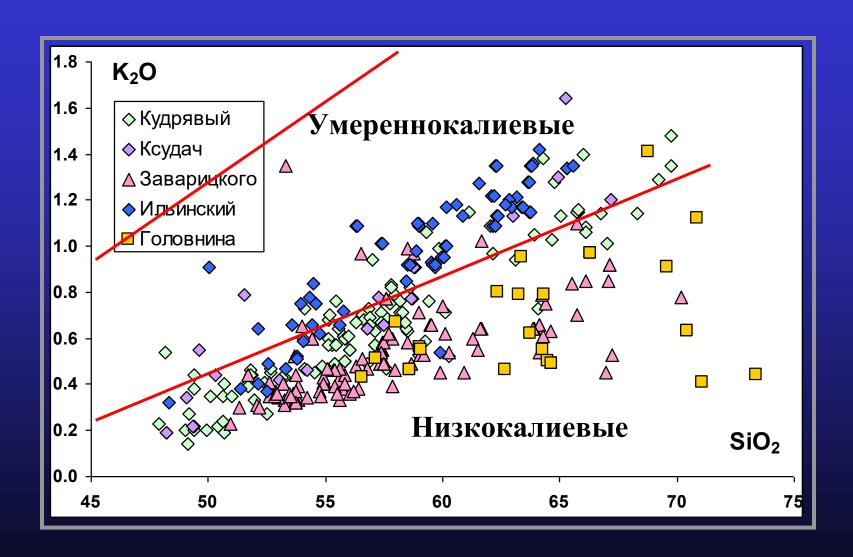
Кудрявый (о.Итуруп)

Структурные особенности алливалитов

Oliv-Plag агрегат с кумулятивной структурой (образец с вулкана Ксудач)

Oliv-Plag агрегат с порфировидной кумулятивной структурой (образец с вулкана Ксудач)

Кумулятивный алливалит с вулкана Головнина


Адкумулаты?

Плагиоклаз

Минеральный состав алливалитов:

- · Плагиоклаз (An₈₉₋₉₇) от 50 до 100%
- · Оливин (Fo₆₉₋₈₁) от 10 до 40%
- Клинопироксен до 10%
- Ортопироксен менее 1%
- Титано-магнетит до 5%
- Хромшпинелид менее 1%
- Раскристаллизованное вулканическое стекло 5-10%

Химический состав алливалитов

ТОЛЕИТ-БАЗАЛЬТОВЫЕ СЕРИИ ВОСТОЧНОЙСЕРИЙ КАМЧАТКИ