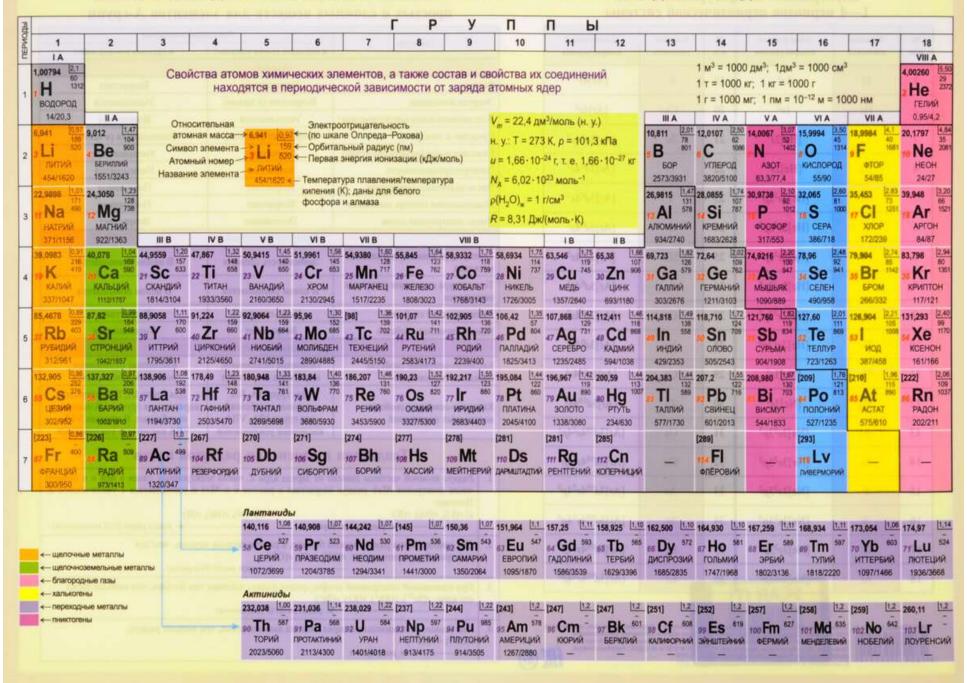

Тема занятия (лекция № 3):

ПОВЕДЕНИЕ МИКРОЭЛЕМЕНТОВ В МАГМАТИЧЕСКИХ ПРОЦЕССАХ (и их индикаторная роль)



ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА

	<u> </u>					_	D 1	.,	_	_	F F		\		N /		173	-	_	_						
ПЕРИОДЫ	A I	В	Α	II	В	A	H I	у В	A	II IV	Ы В	A 3) <u> </u>	-	. N A	VI	В	A	VII	В	A		VII	I		В
1	(H)			2002				838	2000		63 (6)		200			5350		Н Hydroge Водоре		94	He Helium Гелий	4.002602		зол элемент Относитель	ная атомна Порядков	ый номер
2	Li Lithium Литий	3 2 11	Beryllium Берилл	9.012 m	2	Borum Bop	10.81	50	С Carbone Углеро	12.0 eum		Nitroger	14.00	"	О Oxygen Кислог	15.99 ium	-	Fluorum Фтор	18.998	8	Ne Neon Heon	10 20.179		Argon Apron	9.948 ⁸	}
3	Na Natrium Натрий	11 8 99	Mg Magnes Marhul		2 ² 8 2 5	Al Aluminiu Алюмин		- A	Si Silicium KpemHi	28.0	86	P Phosph Фосфо	30.9 7	"	Sulfur Cepa	32.06	10	Cl Chlorum Xлор	35.453	3	Ar Argon Apron	18 39.948	8	Распределе		
4	Kalium Калий	19 å	Ca Calcium Кальци	40.08	2882	21 2 44.9	956 Scand Ckar		² ₁₀ 22 ⁸ ₂ 47.	Tri	Ti tanium Титан	² 1 23 50.	Ван	V adium iaдий	7	Chro	(ром	23 25 82 54.	938 Manga Mapra	num	2 14 26 8 55 .8	Ferrur Желез	2 58.9 0	зз Co Cobaltum Кобальт	2 36.70	Ni Niccolum Никель
T	8 63.546	Cu Duprum Medi	2 6 5.	Zir	cum	Ga Gallium Галлий	69.72	2	Ge German Герман	72.5 nium	-	As Arsenic Mышья	74.92 um	2 2	Se Seleniui Ceлен		2	Br Bromun Spom	79.904	4 2	Kr Krypton Kpиптон	36 ₁ 83.80	8 2		4000	
5	Rb Rubidium Рубидий	37 8 468 8	Sr Strontiu Стронь	87.62 Im		39 18 88.9	Ytt	Y trium rpuй	20 40 18 91.	Ziro Цир і	Zr conjum коний	2	Nic Hu	Nb oblum oбий	42 18 95.	Molybda Моли	епит бден	902	91 Techne Texhe		5 44 8 101.	Rutheniur Рутени	й	906 Rh Rhodium Родий	1.5	Pd Palladium Палладий
J		Ag gentum pe6pc		Cadr	nium	In Indium Индий	114.8	2 8	Sn Stannur Олово	m	. 2	Сурьма	a	/b ii	Te Telluriur Теллур	127.6	2	I lodum Иод	1 26. 904	9 8	Xe Xenon Kcenon	54 ₁ 131.29	8 8 8 8 8 2			
6	Cs Севіцт Цезий 132.	55 18 905 18	Ba Barium Барий	137.3		57 18 18 138 2	Lantha	а* пит нтан	2 10 72 39 178 18 178	В.49 На Га	Hf afnium фний	11 73 18 180	0.947 9 Tan Ta	Ta stalum	2 12 74 32 18 18 183 8 2	I.85 Wolfra	mium	13 75 18 186		Re	² 14 76 32 18 190 . 8	2 Osmiur Ocmu	11 8	22 Ir Iridium Иридий	8 195.0	Pt Platinum Платина
	8 190.907	Aurum Boлото	1 8 200	Hydrarg	vrum	Tl Thallium Таллий	204.3	2	Pb Plumbu CBинел	ц	8	Bi Bismuth Bucky	208.98 num	18	Po Poloniui Полоны	208.9	8	At Astatium ACTAT	209.99	9 18	Rn Radon Радон	86 1 [222]				
7	Francium Франций	87 10 31 32 18	Ra Radium Радий	[226]	8 2 18 32 18 82 2	2 89 18 32 1227 18 8 2	Acti	nium Huñ		61] Rutherfo		2 ₁₁ 105 32 [2 18 8 2	62] Dut	Db onium обний	2 12 32 32 18 18 8 2	Seabor	Sg rgium pruй	13 107 32 [26	Boh	3h rium opuй	14 108 32 32 18 18 18	Hassium	n 18	Meitnerium Meйтнерий	32 [209]	
ФОРМУЛЫ ВЫСШИХ ОКСИДОВ	R ₂ O		1	RO		F	1 ₂ O ₃			RO,			R ₂ O ₅		F	1O ₃		F	R ₂ O ₇					RO ₄		
ФОРМУЛЫ ЛЕТУЧИХ ВОДОРОДНЫХ СОЕДИНЕНИЙ	•			en en erant		53.70			RH ₄			RH ₃			RH2			RH								
лантаноиды*	🖟 Церий 🖟 Презеодим 🖟 Неодим 🖟 Прометий 🖟 Самарий 🖟 Европий 🖟 Гадолиный 🖟 Тербий 🖟 Диспрозий 🖟 Гольный 🖟 Эрбий 🖟 Тулий 🖟 Иттербий 🖟 Лютеций																									
АКТИНОИДЫ**	АКТИНОИДЫ** 230.08 Th 3231.04 Pa 231.04 Pa 231.05 Np 244.06 Pu 251.06 Am 247.07 Cm 247.07 Bk 247.07 Cm 247.07 Bk 247.07 Bk 251.08 Cf 251.08 F S 251.08							Lawrencium																		
РЯД АКТИВ	РЯД АКТИВНОСТИ МЕТАЛЛОВ Li, K, Ba, Ca, Na, Mg, Al, Be, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H ₂ , Sb, Cu, Hg, Ag, Pt, Au							, Au																		

And the Company of th

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА

Классификация химических элементов по Гольшмидту

Сидерофильные	Халькофильные	Литофильные	Атмофильные		
Co, Ni	Fe, (Co), (Ni)	Li, Na, K, Rb, Cs	H, N, O		
Ru, Rh, Pd	(Ru), (Rh), (Pd)	Be, Mg, Ca, Sr, Ba	He, Ne, Ar,		
Os, Ir, Pt	(Os), (Pt)	B, Al, Sc, Y, REE	Kr, Xe		
Au, Re, Mo	Se, Te, (Mo)	Si, Ti, Zr, Hf,			
Ge, Sn, W	(Ge), (Sn), Pb	Th, U			
Cu, Ga	(Cu), Ag	P, V, Cr, Nb, Ta			
As, Sb	(As), (Sb), Bi	(H), (O), Cl, Br, I			
	Zn, Cd, Hg	(Fe), Mn, (Zn), (Ga)			
¥.	(Ga), In, Tl		s		

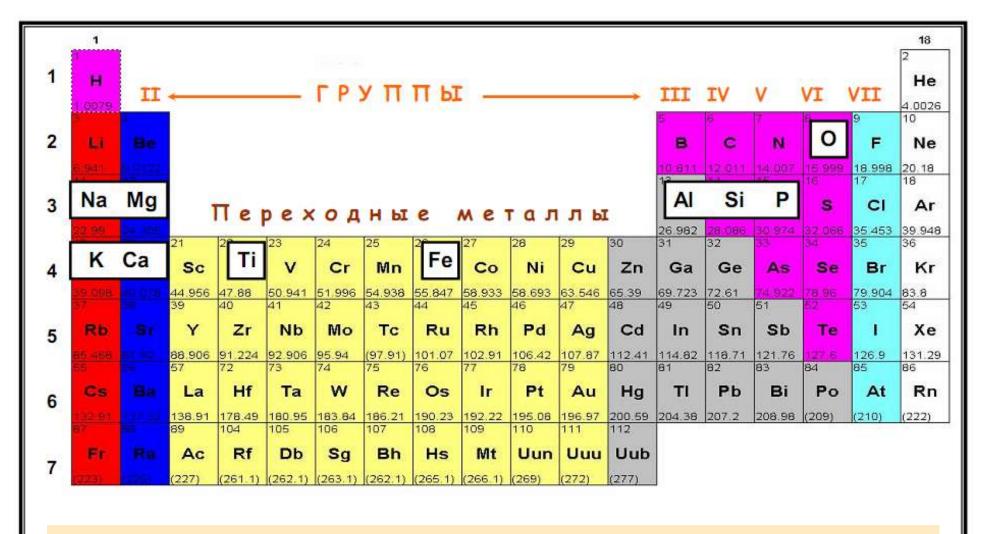
Более дробная классификация с акцентом на эндогенные процессы

Главные элементы:Si, Ti, Al, Fe, Mn, Mg,
Ca, Na, K, P

Радиогенные изотопы: K-Ar, Ar-Ar, Rb-Sr, Sm-Nd, Th-U-Pb, Hf-Lu, Re-Os Стабильные изотопы: H, O, C, S...

Летучие компоненты: H₂O, CO₂, H₂S, SO₂...

Элементы примеси - микроэлементы (trace elements)


Крупноионные "литофилы": Cs, Rb, R, Ba, Sr

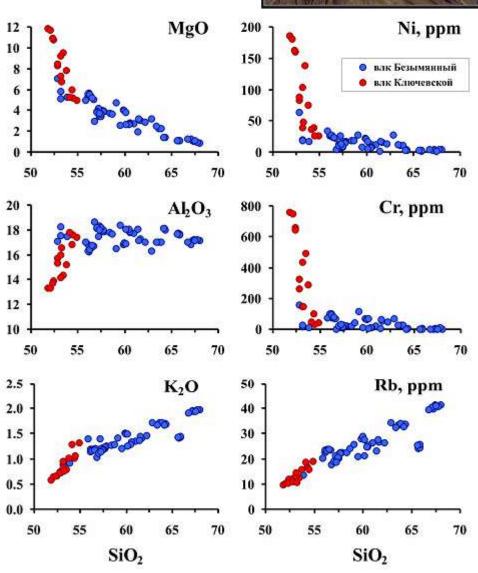
Благородные металлы: Au, Ag, Re, включая ЭПГ -Os, Ir, Ru, Rh, Pd, Pt Переходные элементы: Mn, Fe, Co, Ni, Cu, Sc, Ti, V, Cr

Высокозарядные элементы: Sc, Y, Th, U, Pb, Zr, Hf, Ti, Nb, Ta, включая РЗЭ – La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

Из учебника Т.Г. Родыгиной (Курс геохимии, Томск-2006) со ссылкой на

5. *Интерпретация* геохимических данных. – М.: Интермет инжиниринг, 2001. – 273 с.

Определение понятия "микроэлемент":


это такой химический элемент, который в рассмотренной магматической системе не образуют собственных минеральных фаз стехиометрического состава

Alkali Earth Metal Trans, Met.

Non-metal Halogen

ЭВОЛЮЦИЯ ГЛАВНЫХ И
ПРИМЕСНЫХ ЭЛЕМЕНТОВ В
ИЗВЕСТКОВО-ЩЕЛОЧНОЙ СЕРИИ
ВУЛКАНОВ КЛЮЧЕВСКОЙ И
БЕЗЫМЯННЫЙ (Вост. Камчатка)

Свойства микроэлементов

при низких содержаниях в породах некоторые из них могут варьировать в 10-100 раз, иногда охватывая диапазон от первых ppm до ~1000 ppm

10 главных компонентов слагают около 99% породы, а на оставшийся 1% приходится около 80 микроэлементов.

И каждый по-своему чувствителен к изменению параметров магматических процессов.

Индикаторная роль микроэлементов проявляется не только как концентрационные особенности той или иной геотектонической обстановки, но также в оценке физико-химических условий образования и эволюции магм.

ИНДИКАТОРНЫЕ СВОЙСТВА МИКРОЭЛЕМЕНТОВ

Элементы	Предпочтительное распределение по фазам и интерпретация
Ni, Co, Cr	Высокие содержания в базальтах (~300 ppm для Ni и 600 ppm для Cr) служат индикатором связи с мантийным источником. Резкое обеднение Ni и Co в серии пород указывает на кристаллизацию OI, а обеднение Cr – на Cpx.
V, Ti	Показатели кристаллизации ильменита и магнетита.
Zr, Hf	Классические несовместимые элементы, но могут замещать Ті в акцессорных фазах, напр. рутиле и сфене.
Ba, Rb	Несовместимы в отношении <i>OI</i> и <i>Cpx</i> , но могут замещать К в плагиоклазе, роговой обманке и биотите.
Sr (Eu)	Входит в плагиоклаз, замещая Са, и является показателем кристаллизации этого минерала на небольших глубинах. В процессах мантийного плавления ведут себя подобно несовместимому элементу.
P.3.3.	Несовместимы с OI, Opx и PI, но входят в Cpx и роговую обманку. Особенно обогащают гранаты. Еи может входить в плагиоклаз, что служит индикатором присутствия полевого шпата в мантийном источнике или кристаллизации PI в ходе магматической эволюции.
У	Обычно ведет себя как несовместимый элемент, параллельно содержаниям тяжелых Р.З.Э. Может обогащать гранат и амфибол.
U, Th	Классические несовместимые элементы, не имеющие фаз - концентраторов.

"Совместимые" (compatible) и "несовместимые" (imcompatible) элементы:

К совместимым относят элементы, которые распределяются (концентрируются) преимущественно в кристаллизующихся минералах, обогащают твердую фазу относительно сосуществующего расплава

Несовместимыми называются микроэлементы, которые в ограниченных количествах допускаются в кристаллы, поэтому в процессах кристаллизации и плавления перераспределяются преимущественно в жидкость.

Значение коэффициентов распределения минерал – расплав ("partition coefficiens")

$$D_i = C_i$$
 минерал / C_i расплав

Совместимые элементы

$$D_{i} > 1$$

Несовместимые элементы

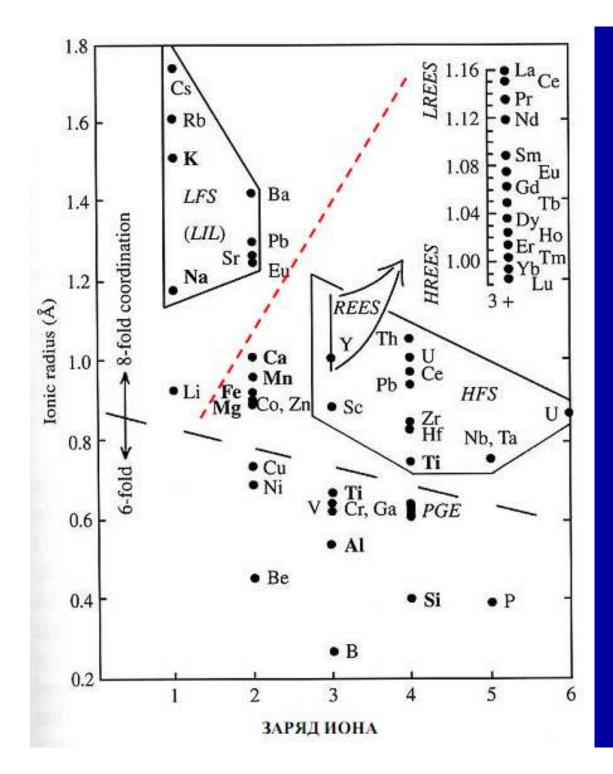
$$D_i << 1$$

"Индифферентные" элементы

$$D_i \approx 1$$

Примеры коэффициентов распределения минерал – расплав в базальтовой системе

		Olivine	Орх	Срх	Garnet	Plag	Amph	Magnetite
Rb		0.010	0.022	0.031	0.042	0.071	0.29	
Sr		0.014	0.040	0.060	0.012	1.830	0.46	
Ва		0.010	0.013	0.026	0.023	0.23	0.42	
Ni		14	5	7	0.955	0.01	6.8	29
Cr		0.70	10	34	1.345	0.01	2.00	7.4
La		0.007	0.03	0.056	0.001	0.148	0.544	2
Ce	ments	0.006	0.02	0.092	0.007	0.082	0.843	2
Nd	me	0.006	0.03	0.230	0.026	0.055	1.340	2
Sm	Elei	0.007	0.05	0.445	0.102	0.039	1.804	1
Eu	arth	0.007	0.05	0.474	0.243	0.1/1.5*	1.557	1
Dy	Eal	0.013	0.15	0.582	1.940	0.023	2.024	1
Er	Rare	0.026	0.23	0.583	4.700	0.020	1.740	1.5
Yb	Ra	0.049	0.34	0.542	6.167	0.023	1.642	1.4
Lu		0.045	0.42	0.506	6.950	0.019	1.563	


Data from Rollinson (1993).

^{*} Eu3+/Eu2+ Italics are estimated

ПРАВИЛА ГОЛЬДШМИДТА

- 1. Два иона одной валентности и близкого радиуса легко образуют взаимные твердые растворы (Fe-Mg или Mg-Ni в оливинах).
- 2. В таких растворах обычно ион меньшего размера характеризуется более высоким значением D (например, Ni в оливинах см. таблицу).
- 3. Если же два иона близкого радиуса имеют разную валентность, то более высокозарядный катион в большей степени концентрируется в кристалле (например, Li и Mn в оливине или К и Ва в плагиоклазе).

Из любого правила есть исключения...

Кристаллохимическая классификация элементов

Ионный потенциал

I = Z/R

Линия I=2 разделяет

LILE - Large-Ion Lithophile Elements и

HFSE - High-Field-Strength Elements

HFS = Z/L

где L - расстояние между катионом металла и анионом кислорода в оксидных системах

Теоретические оценки D_i, основанные на теории деформаций кристаллических решеток

(Blundy, Wood, 1991-2012)

Earth and Planetary Science Letters 188 (2001) 59-71

www.elsevier.com/locate/epsl

EPSL

The effect of cation charge on crystal-melt partitioning of trace elements

Bernard J. Wood*, Jonathan D. Blundy

Напр., замещение иона Ca²⁺ в определенной позиции М в решетке PI ионами "i" разной зарядности +1,+2,+3,...

Такое замещение можно описать обменной реакцией

$$i_{\text{melt}} + o_{\text{crystal}} = i_{\text{crystal}} + o_{\text{melt}}$$

Тогда из теории коэффициент разделения D_i можно выразить:

$$D_{i} = D_{o} \exp \left(\frac{-4\pi E N_{A} \left(\frac{r_{o}}{2} (r_{o} - r_{i})^{2} - \frac{1}{3} (r_{o} - r_{i})^{3} \right)}{RT} \right)$$

... где E – модуль Юнга по позиции, N_A – число Авогадро...

Теоретические оценки D_i, основанные на теории **деформаций кристаллических решеток**

(Blundy, Wood, 1991-2012)

ELSEVIER

Earth and Planetary Science Letters 210 (2003) 383-397

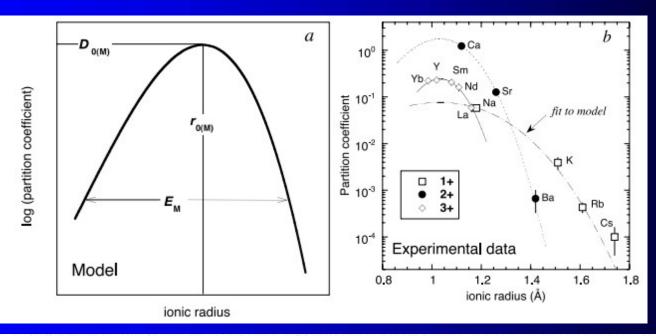
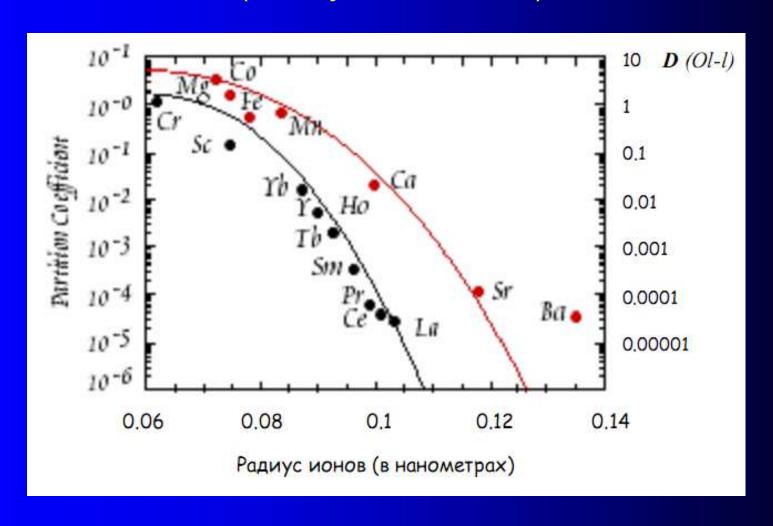
Frontiers

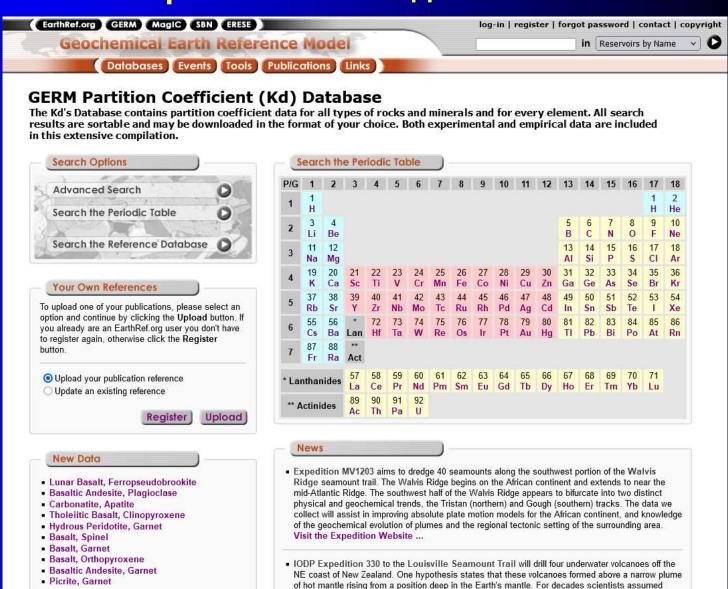
Frontiers

Partitioning of trace elements between crystals and melts

Jon Blundy*, Bernard Wood

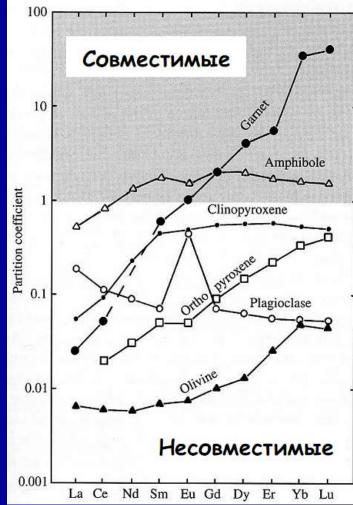
Теоретическая форма такой зависимости имеет вид

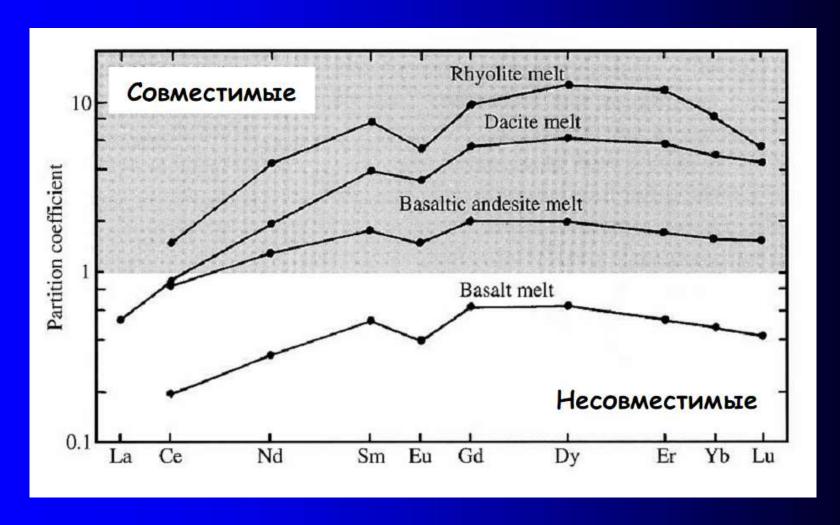

Fig. 4. Ionic radius has a strong influence on partition coefficients. (a) Cartoon illustrating the *lattice strain model* of trace element partitioning. For an isovalent series of ions with charge n+ and radius r_i entering crystal lattice site M, the partition coefficient, $D_{i(M)}$, can be described in terms of three parameters: $r_{0(M)}^{n+}$, the radius of that site; E_M^{n+} , the elastic response of that site (as measured by Young's Modulus) to lattice strain caused by ions that are larger or smaller than $r_{0(M)}^{n+}$; and $D_{0(M)}^{n+}$, the strain-compensated partition coefficient for a (fictive) ion with radius $r_{0(M)}^{n+}$, according to the expression [30]:

Примеры модельных зависимостей, описывающих экспериментальные значения коэффициентов распределения оливин – расплав (Blundy, Wood, 1992)

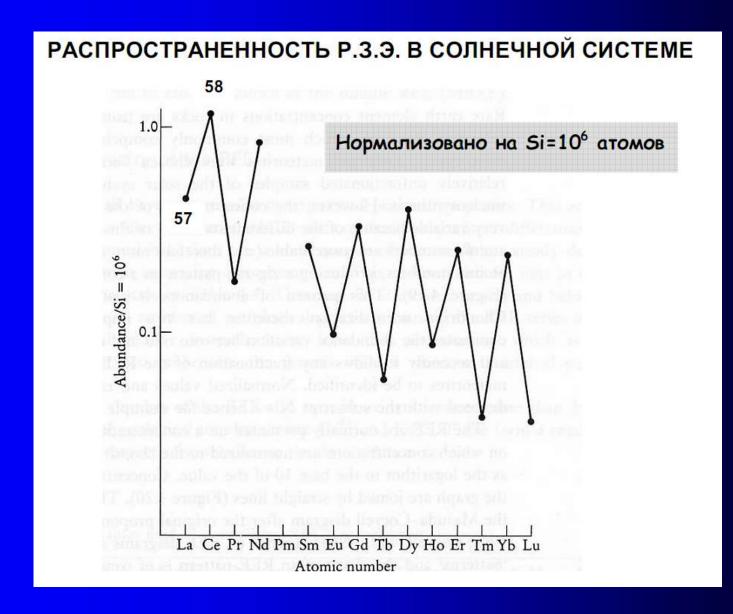
Главный источник информации по D_i – экспериментальные данные!


GERM database

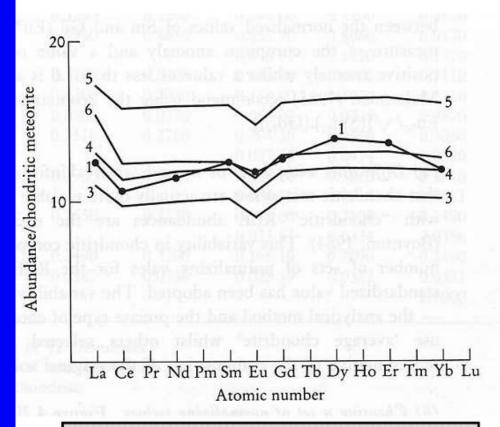
these mantle plumes remain anchored there for tens of millions years, but there is mounting evidence that mantle plumes wander in a large-scale mantle wind. This expedition aims to establish how much mantle plumes may have moved over the last 80 million years and whether the Louisville



РЕДКИЕ ЗЕМЛИ (Р.З.Э.)

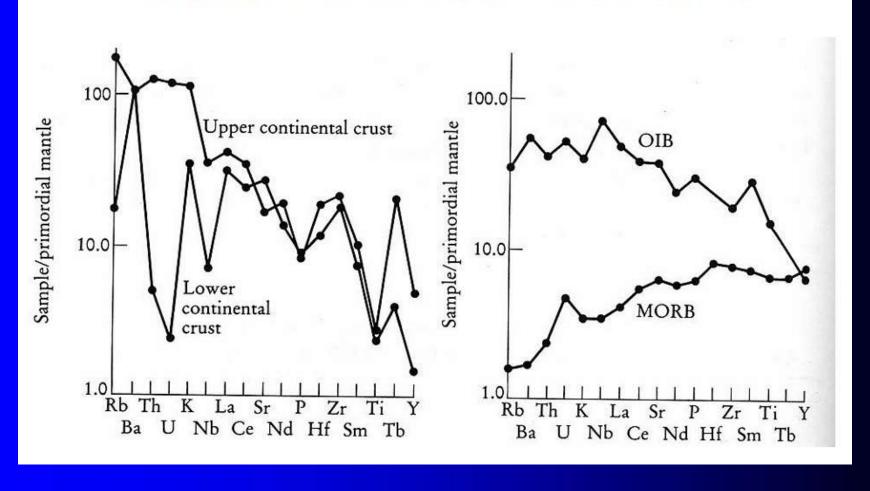


Коэффициенты распределения РЗЭ в базальтовой системе

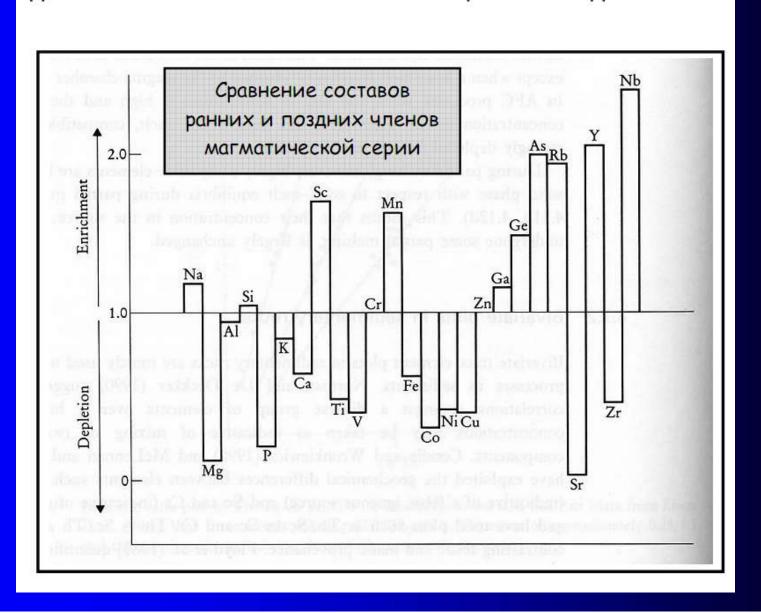

Зависимость коэффициентов распределения минерал – расплав от состава системы

Коэффициенты распределения РЗЭ для пары амфибол - расплав в системах разного состава

СОДЕРЖАНИЯ Р.З.Э. В ТОЛЕИТОВОМ БАЗАЛЬТЕ, НОРМАЛИЗОВАННЫЕ НА СОСТАВ РАЗЛИЧНЫХ ОБЫКНОВЕННЫХ ХОНДРИТОВ



1 - 6 - один и тот же образец, нормализованный на составы различных хондритов


Концентрации Р.З.Э. в хондрите и примитивной мантии Земли

Элемент	Хондрит	Мантия			
La	0.237	0.687			
Ce	0.612	1.775			
Nd	0.467	1.354			
Sm	0.15	0.444			
Eu	0.058	0.168			
Gd	0.206	0.596			
Tb	0.037	0.108			
Dy	0.254	0.737			
Ho	0.057	0.164			
Er	0.166	0.480			
Tm	0.026	0.074			
Yb	0.170	0.493			
Lu	0.025	0.074			

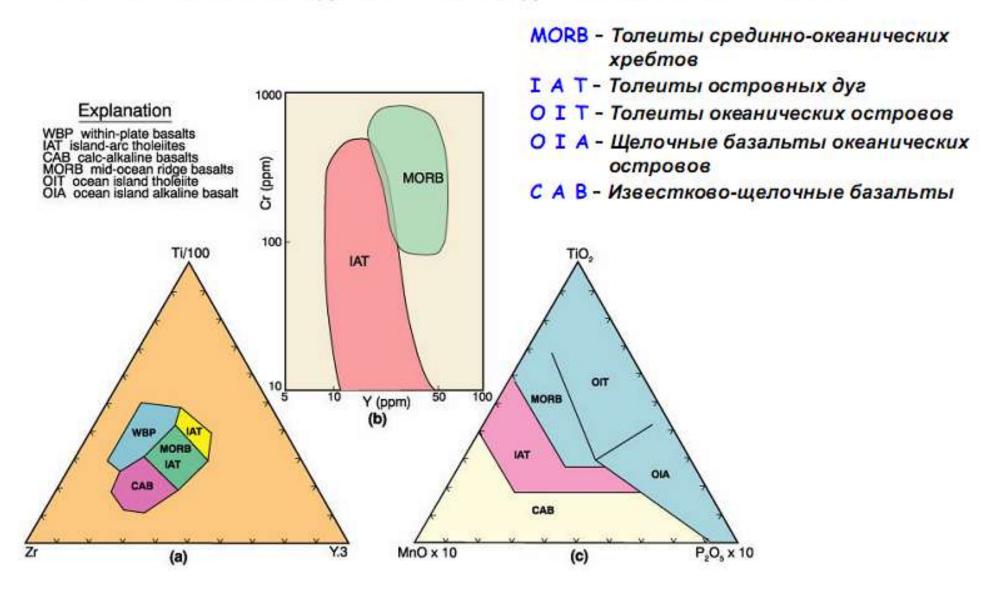

ПРИМЕРЫ СПАЙДЕР-ДИАГРАММ (нормировка на состав примитивной мантии)

ДИАГРАММА ОТНОСИТЕЛЬНОГО ОБОГАЩЕНИЯ - ОБЕДНЕНИЯ

ПРИМЕРЫ ГЕОХИМИЧЕСКИХ ДИАГРАММ ДЛЯ РАЗДЕЛЕНИЯ ПОЛЕЙ СОСТАВОВ ВУЛКАНИЧЕСКИХ ПОРОД РАЗЛИЧНЫХ ГЕОДИНАМИЧЕСКИХ ОБСТАНОВОК

