Определение координат точек местности

2 этапа:

полевые работы — измерения камеральные работы — вычисления и графические построения

Измерительный процесс

Измеряют горизонтальные и вертикальные углы, наклонные, горизонтальные и вертикальные расстояния

Измерение — сравнение величины измеряемых угла или длины с однородной величиной, принятой за единицу меры

Единицы мер:

Мера длины - МЕТР Мера времени - СЕКУНДА

Мера угла - ГРАДУС Мера массы – КИЛОГРАММ

Мера площади – КВАДРАТНЫЙ МЕТР

Мера температуры – ГРАДУС по Цельсию

Определение координат точек местности

Для измерений используют геодезические приборы: теодолиты, нивелиры, мерные ленты,

Результаты измерений фиксируют в журналах установленного образца или в накопителях электронной информации

Дополнительно составляют схематические чертежи - *АБРИСЫ*

Вычислительный процесс

Математическая обработка результатов измерений

Графический процесс

Составление на основе результатов измерений и вычислений чертежей с соблюдением установленным условных обозначений

Точность измерений

степень близости результата измерений к действительному значению измеряемой величины

Абсолютно точные измерения невозможны!

Измерения проходят в определенных условиях

Условия определяются набором факторов

Объект измерений Метод и средство измерений Внешняя среда Исполнитель

Факторы не сохраняют стабильности

Отклонение результата от истинного значения

Погрешность – разность между результатом измерений и действительным значением измеряемой величины

Различают 3 вида погрешностей:

• Грубые

(Исполнитель)

• Систематические

(Средство измерений) (Внешняя среда) (Исполнитель)

• Случайные

(Исполнитель) (Внешняя среда)

Если условия измерений постоянны = измерения равноточны

Если проведены несколько (n) измерений одной и той же величины a (например, угла). При этом каждый раз получаются немного отличные друг от друга значения (a_1 , a_2 , a_3 и т.д.) то:

Среднее арифметическое значение числа:

$$a_{cp} = \frac{a_1 + a_2 + ... + a_n}{n} = \frac{\sum a_n}{n}$$

Средняя квадратическая погрешность измерений:

$$M = \pm \sqrt{\frac{\sum \Delta a_n^2}{n}}$$
 где $\Delta a_n = a_n - a_{cp}$

Неравноточные измерения

Если проведены несколько (k) серий измерений одной и той же величины a. При этом в первой серии было проведено P_1 измерений и получено значение a_{cp1} , во второй серии P_2 измерений и получено значение a_{cp2} и т.д.)

Среднее взвешенное значение числа:

$$a_{cp_B3} = \frac{a_{cp1}P_1 + a_{cp2}P_2 + ... + a_{cpk}P_k}{\sum P} = \frac{\sum a_{cpk}P_k}{\sum P}$$

на 1000 равноточных измерений

68 % не превышает ± М 95,4 % не превышает ± 2М 99,7 % не превышает ± 3М

Предельная допустимая погрешность измерений

Погрешности измерений

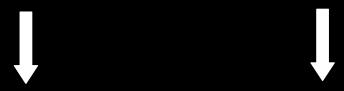
Различают **абсолютные** и **относительные** погрешности

$$S_{OTH} = M / X$$

М – абсолютная (средняя квадратическая) погрешность

Х – значение измеряемого параметра

Результат влияния погрешностей на точность измерений - *НЕВЯЗКИ*, т.е. расхождение теоретически вычисленных значений с измеренными.

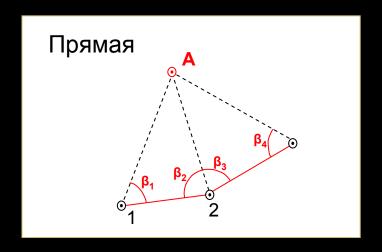

Для каждого вида работ и класса точности невязки не должны превышать величин, установленных стандартами.

Определение координат точек местности

Способы определения плановых координат

Геодезические засечки

способ определения плановых координат одной точки по известным координатам одной или нескольких точек в результате измерения некоторого числа величин



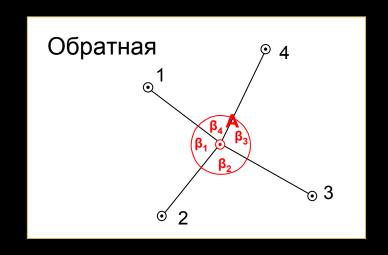
Горизонтальные углы

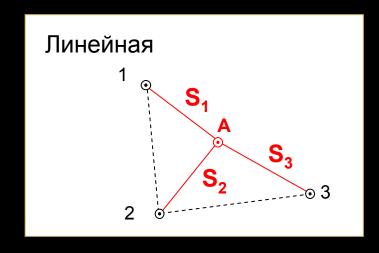
Расстояния

Горизонтальный угол — угол, лежащий в плоскости горизонта с вершиной в точке измерения между направлениями на две другие точки

Определение плановых координат точек местности Засечки

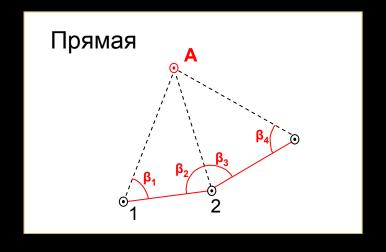
определение плановых координат пункта по измерениям горизонтальных углов в направлении на него с двух (или более) исходных пунктов с известными координатами

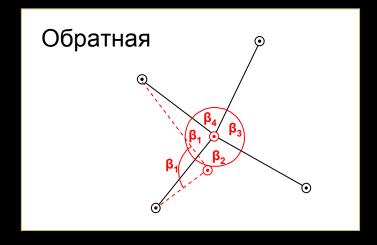

Координаты точки А находят по формулам Юнга

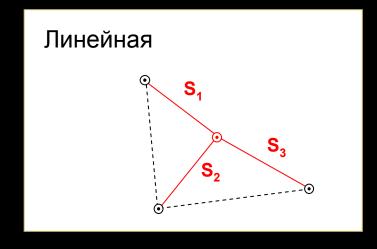

$$x_{A} = \frac{x_{2} * \operatorname{ctg} \beta_{1} + x_{1} * \operatorname{ctg} \beta_{2} + (y_{2} - y_{1})}{\operatorname{ctg} \beta_{1} + \operatorname{ctg} \beta_{2}}$$

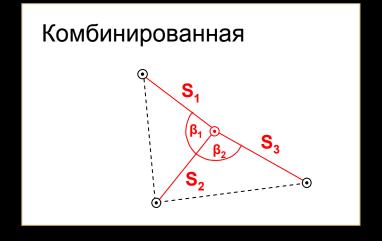
$$y_{A} = \frac{y_{2} * \operatorname{ctg} \beta_{1} + y_{1} * \operatorname{ctg} \beta_{2} + (x_{2} - x_{1})}{\operatorname{ctg} \beta_{1} + \operatorname{ctg} \beta_{2}}$$

Определение плановых координат точек местности Засечки

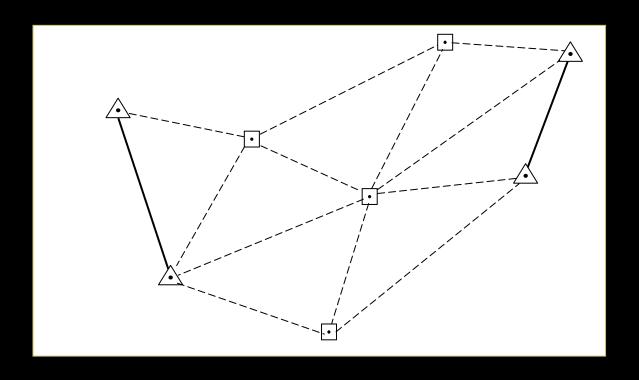

определение плановых координат пункта по измерениям <u>горизонтальных углов</u> в направлениях <u>с него</u> на три (и более) пункта с известными координатами

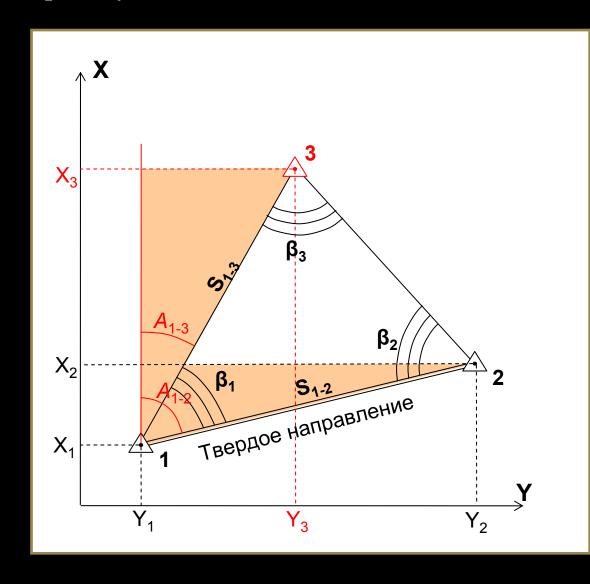





определение плановых координат пункта по измерениям расстояний от него до двух (и более) пунктов с известными координатами

Определение координат точек местности Засечки




Определение плановых координат точек местности

Триангуляция

способ передачи плановых координат, основанный на измерении внутренних углов в треугольниках

Определение плановых координат точек местности Триангуляция

Из прямоугольного треугольника: $S_{1-2} = \sqrt{(\Delta Y_{1-2})^2 + (\Delta X_{1-2})^2}$ $A_{1-2} = \arctan(\Delta Y_{1-2} / \Delta X_{1-2})$ Обратная геодезическая задача

$$A_{1-3} = A_{1-2} - \beta_1$$

По теореме синусов: $S_{1-3}/\sin\beta_2 = S_{1-2}/\sin\beta_3$ $S_{1-3} = \sin\beta_2 * S_{1-2}/\sin\beta_3$

Из прямоугольного треугольника: $\Delta X_{1-3} = S_{1-3} * \cos A_{1-3}$ $\Delta Y_{1-3} = S_{1-3} * \sin A_{1-3}$ Прямая геодезическая задача

Определение координат точек местности Способы определения плановых координат

Допустимость угловых невязок определяется

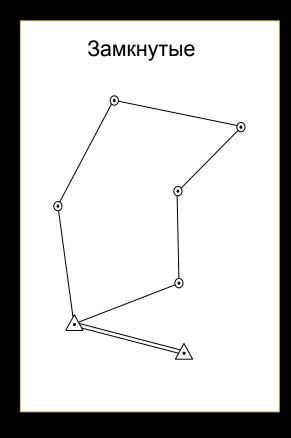
$$Wβдоп = 2 s √n$$

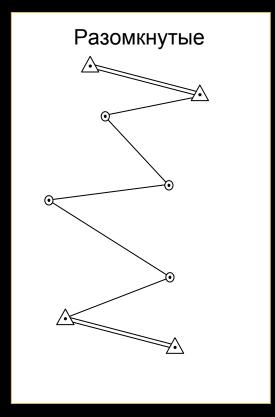
s – инструментальная погрешность прибора

Определение плановых координат точек местности

Трилатерация

способ определения плановых координат, основанный на измерении длин сторон четырехугольников

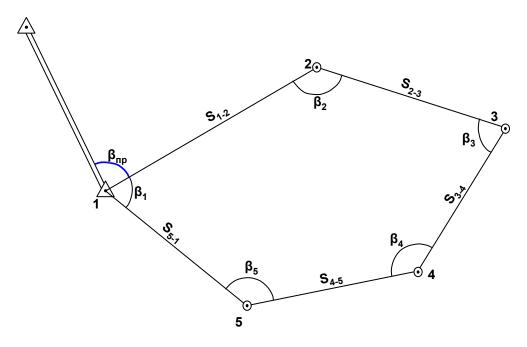

Координаты определяют по схеме линейной засечки

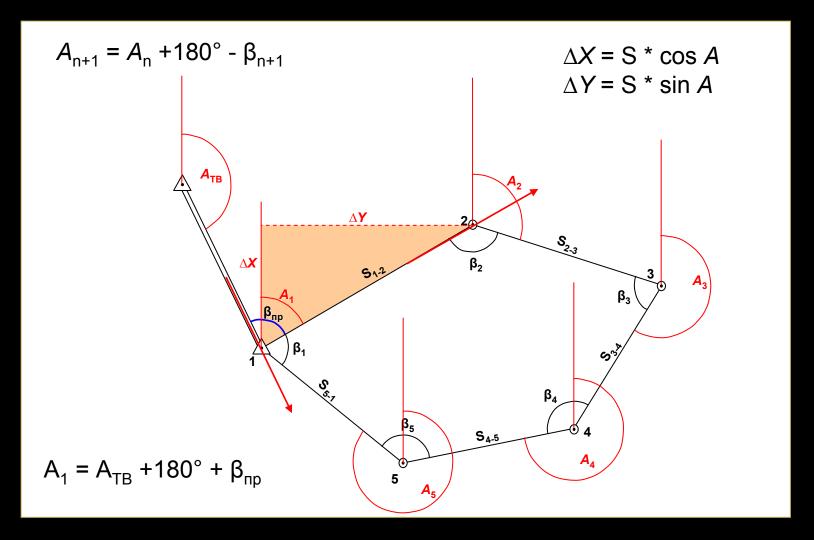

Измеряют все стороны и диагонали четырехугольника для контроля качества измерений

Определение плановых координат точек местности Полигонометрия

Полигонометрия заключается в разбивке полигонов на местности и прокладывании *теодолитных ходов* по точкам полигонов.

Теодолитные ходы бывают *следующих* видов:




Определение плановых координат точек местности Измерения в теодолитном ходе

Допустимая угловая невязка $f\beta_{\text{доп}} = 2m\sqrt{n}$ $\Sigma \beta_{\text{T}} = 180^{\circ} * (n-2)$ m — точность прибора $\Sigma \beta = \beta_1 + \beta_2 + ... + \beta_n$

Угловая невязка $f\beta = \sum \beta - \sum \beta_T$

Определение координат точек местности Измерения в теодолитном ходе

80°20'

Обработка теодолитного хода

Линейная невязка «разбрасывается» пропорционально длине стороны

Nº	Угол измер.	Угол испр.	Дирекц. угол	Длина сторон	Приращения коорд.		Координаты точек	
					∆x	∆ y	X	У
1	66°28' -0,4'	66º27,6'	80º20'	58,43	9,81 -0,01 9, <i>80</i>	57,60 0	1000,00	2000,00
2	95°25' -0,4'	95º24,6'		30,43	9,00		1009,80	2057,60
			164º55,4'	70,15	-67,74	18,23 0,01 18,24 -21,34		
3	144°31' -0,4 '	144º30,6'			- <mark>0,02</mark> -67,76		942,04	2075,84
			200º24,8'	61,17	-57,33			
4	41°28' -0,4 '	41º27,6'			- <mark>0,02</mark> -57,35		884,69	2054,50
			338057,2	83,41	77,84	-29,96 0,01 -29,95		
5	192°10' 192°09,6' -0,4'	192º09,6'			- <mark>0,02</mark> 77,82		962,51	2024,55
			000047 01	44.00	37,50	-24,55		
		326º47,6'	44,82	- <mark>0,01</mark> 37,49		1000,00	2000,00	

 $\Sigma \beta_{\phi a \kappa \tau} = 540^{\circ}02'$

$$\Sigma \beta_{\text{Teop}} = 540^{\circ}$$

$$f_{e} = 2'$$

$$f_{\beta\beta}^{\beta} = \pm 1' \sqrt{5} = \pm 2.2'$$

 $\Sigma \triangle x = 0.08 \quad \Sigma \triangle y = -0.02$

$$f_{a6c} = \sqrt{\sum \Delta X^2 + \sum \Delta Y^2} = 0,082$$

$$f_{\text{OTH}} = \frac{1}{\sum L: f_{\text{a6c}}} \approx \frac{1}{3878} \le \frac{1}{2000}$$