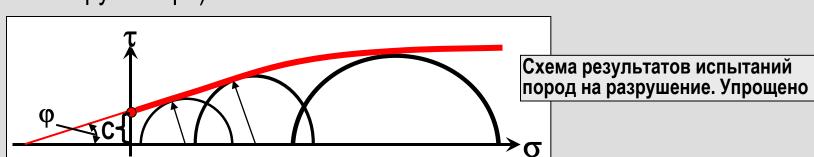


# Структурная геология и геологическое картирование

Лекция № 11

«Модели формирования разрывов»


### Прочность пород, угол внутреннего трения

Прочность пород есть свойство сопротивляться воздействию внешних нагрузок без разрушения. Для того, чтобы разрушить породу необходимо преодолеть вопервых, силу сцепления между зернами и, во-вторых, силу трения между ними. Прочность породы увеличивается с увеличением всестороннего давления.

Уравнение теории прочности Кулона-Мора:  $\tau_n = \sigma_n t g \phi + c$ 

где  $\sigma_n$  и  $\tau_n$  нормальное и касательное напряжения;  $\mathbf{c}$  – коэффициент сцепления (зависит от силы связи между зернами);  $\phi$  – угол внутреннего трения материала (зависит от силы трения между зернами при сдвиговой деформации – для горных пород 35-40°);  $\mathbf{tg}\phi$  – коэффициент пропорциональности между максимальными

касательными и нормальными напряжениями. Для графического определения коэффициента сцепления и угла внутреннего трения применяют круги Мора для напряжений, разрушающих породу (предельные круги Мора).



Угол внутреннего трения – показатель прочности горной породы, равный углу наклона касательной к огибающей предельных кругов напряжений в точке ее пересечения с осью касательных напряжений (ГОСТ 30416-96)

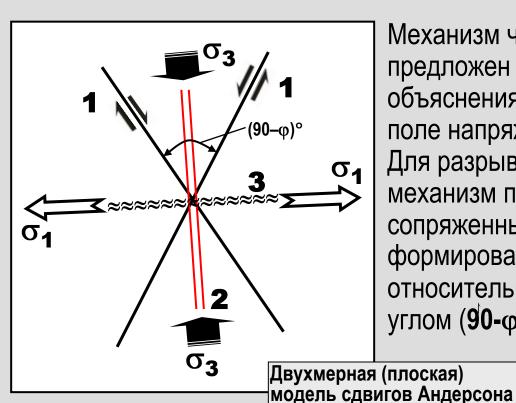
### Модели формирования разрывных нарушений

Разрушение горных пород происходит под воздействием напряжений, превышающих их предел прочности. В природе разрывы возникают в различных условиях за счет образования трещин, имеющих, как правило, закономерную ориентировку в поле напряжений. Смещение происходит по трещинам скалывания, которые из-за воздействия сил внутреннего трения формируются под углом, меньшим 45°,.

Различают две основные модели образования разрывных нарушений:

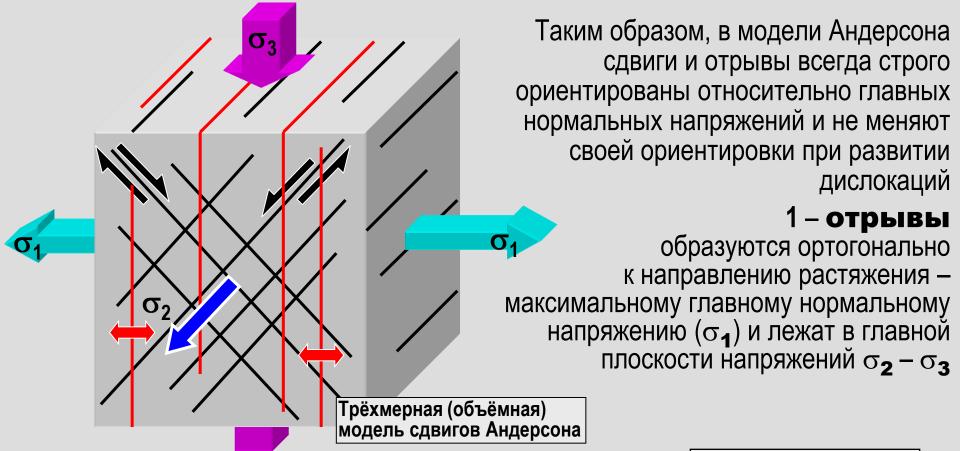
**Модель Кулона-Андерсона** – формирование систем разрывов в механической обстановке *чистого сдвига*.

**Модель Риделя** – формирование систем разрывов в механической обстановке *простого сдвига*.


В механической обстановке **чистого сдвига** разрывы возникают под действием **нормальных напряжений**, блоки перемещаются по ним параллельно самим себе.

В механической обстановке *простого сдвига* разрывы возникают под действием тангенциальных напряжений, блоки перемещаются по ним, испытывая разворот, ротацию.




### Модель Кулона – Андерсона





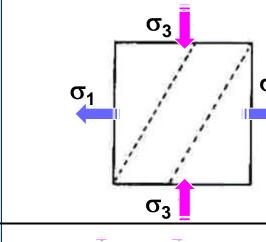
Механизм чистого сдвига был первоначально предложен Андерсоном (Anderson, 1905) для объяснения ориентировки разломов в трехосном поле напряжений в однородной среде. Для разрывов сдвиговой кинематики этот механизм предполагает, что система сопряженных левых и правых сколов будет формироваться **симметрично** относительно направления сокращения под углом ( $90-\phi$ )°, где  $\phi$  — угол внутреннего трения

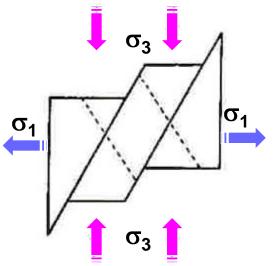
- 1 сопряженные **трещины скалывания** образуют острый угол, биссектриса которого совпадает с направлением минимального главного нормального напряжения  $\sigma_3$  (сжатия);
- 2 **трещины отрыва** образуются ортогонально к максимальному главному нормальному напряжению  $\sigma_{4}$  (растяжению);
- 3 **структуры сжатия** образуются ортогонально к минимальному главному нормальному напряжению σ<sub>3</sub> (сжатию)

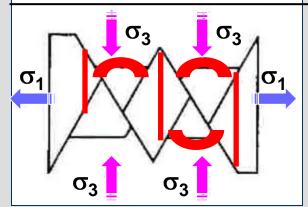


- 2 сопряженные **левые** и **правые сколы** образуют:
- а) острый угол, биссектриса которого совпадает с направлением **минимального** главного нормального напряжения сжатия  $(\sigma_3)$  и лежит в главной плоскости напряжений  $\sigma_2$ – $\sigma_3$ ,
- **б**) тупой угол, биссектриса которого совпадает с направлением **максимального** главного нормального напряжения растяжения ( $\sigma_1$ ) и лежит в главной плоскости напряжений  $\sigma_2$ – $\sigma_1$ ;

#### NB!


Линии пересечения сколов совпадают направлением среднего главного нормального напряжения  $\sigma_2$ !



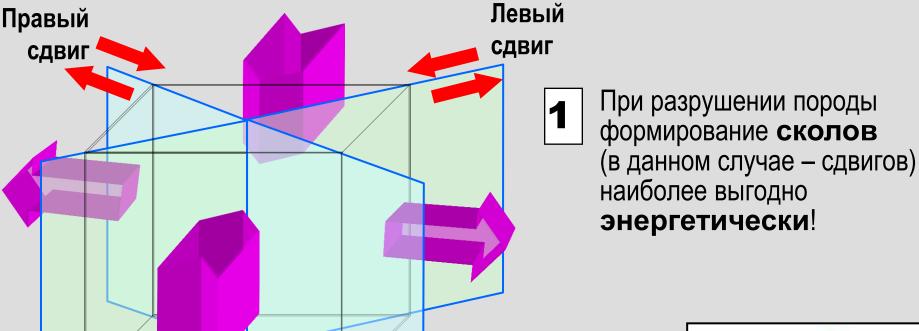


Блоки, ограниченные сколами, перемещаются параллельно самим себе. В целом происходит **удлинение** деформируемого объема в направлении максимального напряжения ( $\sigma_1$ ) и **укорочение** в направлении минимального напряжения ( $\sigma_3$ )

Сопряженные разломы могут компенсировать неротационную компоненту деформации до тех пор, пока они действуют **одновременно**, иначе возникает проблема пространства, которая может быть решена только ротацией и изменением направления скольжения на каждом из сопряженных сдвигов.

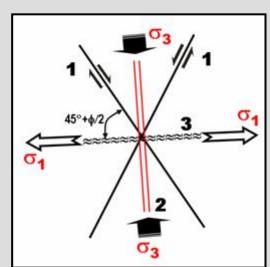
Трещины растяжения или сбросы будут формироваться перпендикулярно к оси удлинения, а складки и надвиги — перпендикулярно к оси сокращения.

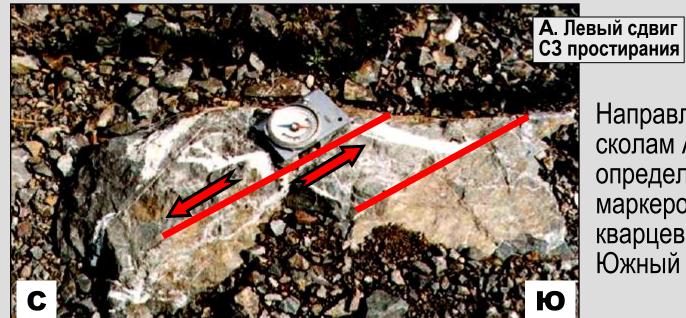






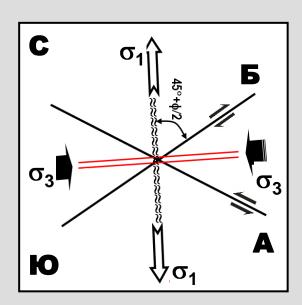


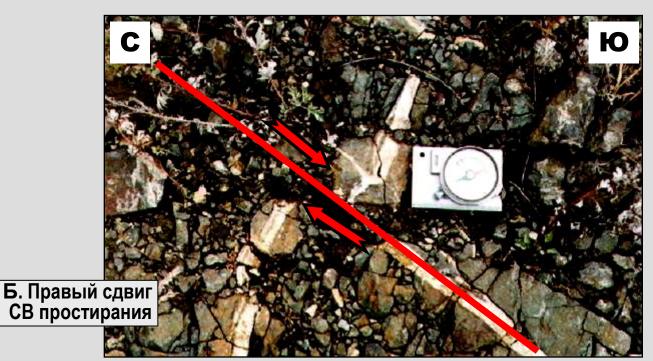


### <u>Реконструкция полей напряжения в механических</u>

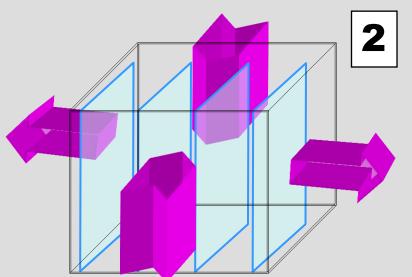



### условиях чистого сдвига



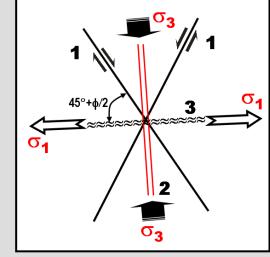

Реальное положение конкретных трещин в пространстве может отличаться от теоретического (иногда весьма существенно) в силу неоднородности деформируемой породы. Поэтому для них обычно определяют среднестатистическое значение

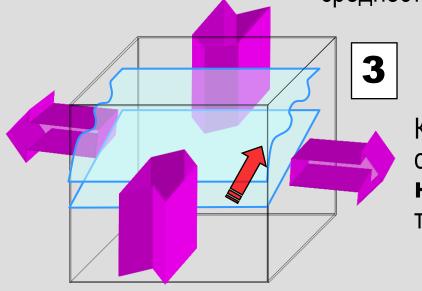





Направление сдвигания по сколам Андерсона можно определить по смещению маркеров, в данном случае – кварцевых жил в базальтах. Южный Урал

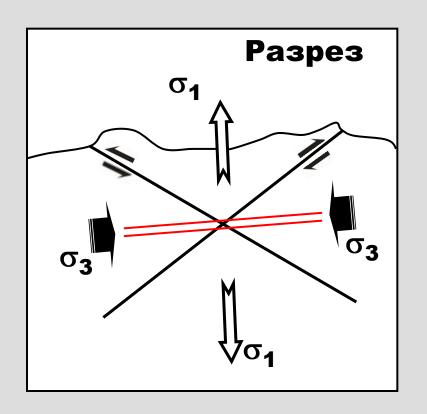


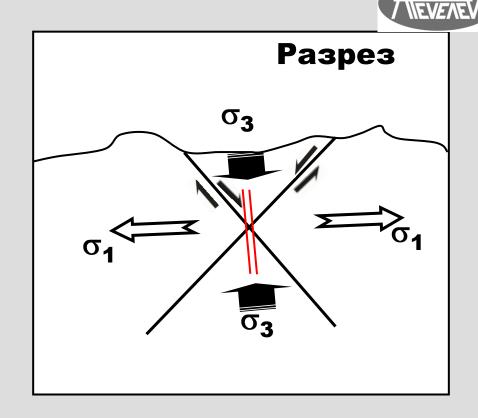






Кроме сколов в условиях чистого сдвига перпендикулярно растяжению формируются **трещины отрыва**, которые заполняются гидротермальными минералами (кварц, кальцит и пр.), а также **сбросы**, **грабены** и др. **структуры растяжения**.

Реальное положение конкретных трещин в пространстве может отличаться от теоретического (иногда весьма существенно) в силу неоднородности деформируемой породы. Поэтому для них обычно определяют среднестатистическое значение

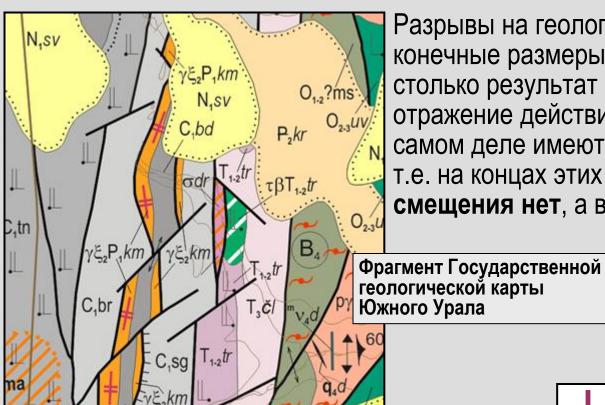



Кроме сколов и отрывов в условиях чистого сдвига перпендикулярно сжатию формируются **надвиги**, **взбросы**, **складки**, т.е. разнообразные **структуры сжатия** 

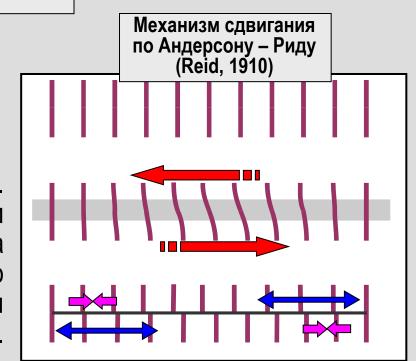


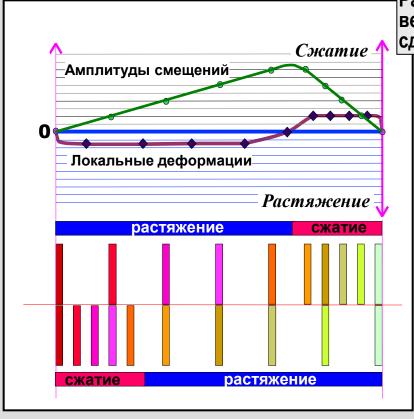
"Сдвиги" (сколы) Андерсона отвечают морфологическому типу разрывов "сдвиги" только при горизонтальной ориентировке главных минимального и максимального напряжений! При вертикальной ориентировке  $\sigma_1$  эти сколы будут "надвигами", а при вертикальной ориентировке  $\sigma_3$  – "сбросами"






Сдвиги Андерсона длительное время рассматривались как единственный возможный тип сдвиговых разрывов именно потому, что они просты для понимания и во многих случаях хорошо объясняют крупно- и среднемасштабные перемещения в различных регионах.


### Механизмы сдвигания при чистом сдвиге






Разрывы на геологических картах имеют конечные размеры. Это не только и даже не столько результат рисовки карты, сколько отражение действительности — разрывы на самом деле имеют конечную длину, т.е. на концах этих разрывов никакого смещения нет, а в середине — есть!

Сдвиги Андерсона являются сколами. Согласно механизму, разработанному самим Андерсоном, они имеют конечную длину, а поэтому вдоль всей трассы андерсоновского сдвига в его крыльях формируются пары структур: растяжения и сжатия.



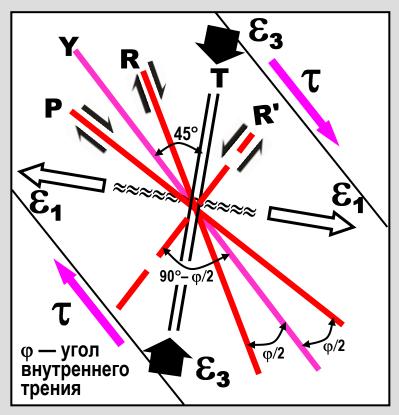


Распределение амплитуд смещений и условных величин деформаций вдоль зоны андерсоновского сдвига (по Арк.В. Тевелеву, 2005)

**Амплитуда** такого сдвига максимальна в его середине, и равна нулю на концах. Но локальные деформации в крыльях идеального андерсоновского сдвига распределены неравномерно — участок с деформациями сжатия примерно в 2 раза короче участка с деформациями растяжения.

#### Максимальные смещения

в крыле сдвига расположены именно там, где деформации растяжения сменяются деформациями сжатия.


В природе такая простая картина наблюдается редко, поскольку **реальная среда неоднородна**, а ее механическое поведение в значительной степени зависит от внутренней структуры (В.Г. Талицкий, 1991).

Таким образом, андерсоновский сдвиг является **активной структурой**, контролирующей развитие вторичных (**пассивных**) по отношению к нему структур сжатия и растяжения.



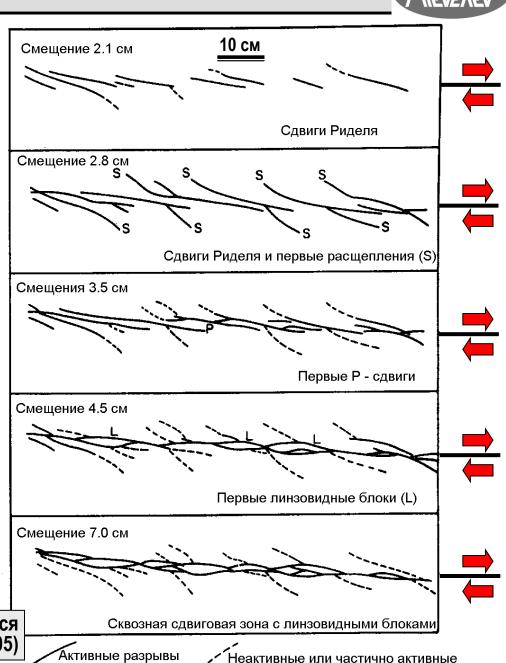
Следствием сдвигообразования может быть не только произвольное распределение структур сжатия и растяжения в крыльях разлома, но и изменение его длины. Распределение деформаций в крыльях сдвига Андерсона в разных условиях деформирования

- $\mathbf{0}$  исходное состояние;
- 1 простой случай: деформируется только одно крыло, длина разлома постоянна; 2 – простой случай (близок к идеальному):
- деформируются оба крыла (у конца разлома в одном крыле происходит сжатие, а в противоположном – растяжение ), длина разлома постоянна;
- **3** весь разлом находится в зоне растяжения, деформируются оба крыла, длина разлома увеличивается;
- **4** весь разлом находится в зоне сжатия, деформируются оба крыла, длина разлома уменьшается;
- **5** комбинированный случай.



### Модель Риделя

Механизм простого сдвига был первоначально предложен В. Риделем (*Riedel, 1929*) для объяснения ориентировки разломов в однородной среде при реобладании **тангенциальных напряжений**.


В таких условиях возникают серии сколов: синтетических сдвигов (совпадающих по направлению смещения с главным сдвигом) и антитетических сдвигов (с противоположным смещением).

**Y** – разломы, параллельные направлению максимальных тангенциальных напряжений (**Y-сколы**, или **генеральные сдвиги**). В данном случае – правые!

- **R R-сколы**, или **сколы Риделя** (синтетические сдвиги под ∠+φ / 2 к направлению генерального сдвига). В данном случае тоже правые!
- Р Р-сколы, или вторичные сколы Риделя (синтетические сдвиги под ∠-φ / 2 к направлению генерального сдвига). В данном случае тоже правые!
- **R**<sup>\*</sup> **сопряженные сколы Риделя** "**антириделевские**" (антитетические сдвиги). В данном случае левые!
- **T трещины отрыва** (∠ ≈ **45°** к генеральному сдвигу). Образуются ортогонально к максимальному главному нормальному напряжению

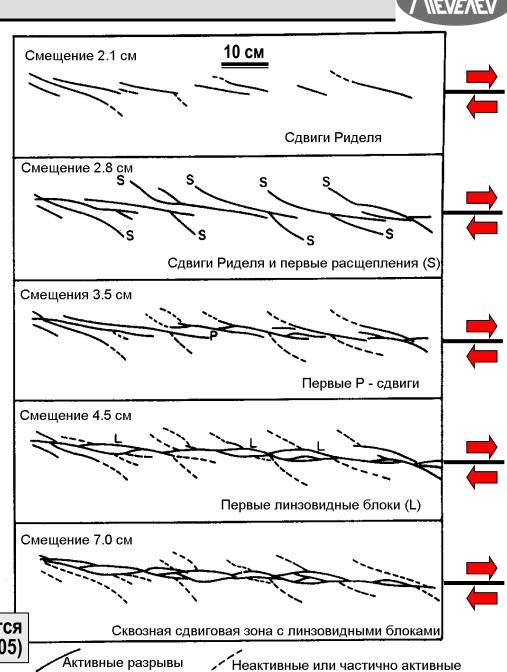
В лабораторных экспериментах обычно моделируется жесткий фундамент, включающий разлом (например из двух жестких досок), перекрытый покровом осадочных пород (обычно это слой глины).

Первыми структурами в перекрывающей глине оказываются эшелонированные сколы Риделя, причем их кулисное расположение прямо зависит от направления сдвигания в подстилающих досках — они образуют левокулисное перекрытие при правом сдвиге и правокулисный ряд при левом сдвиге.



В.Г. Талицкий, 1991 (цитируется по Арк.В. Тевелеву, 2005)

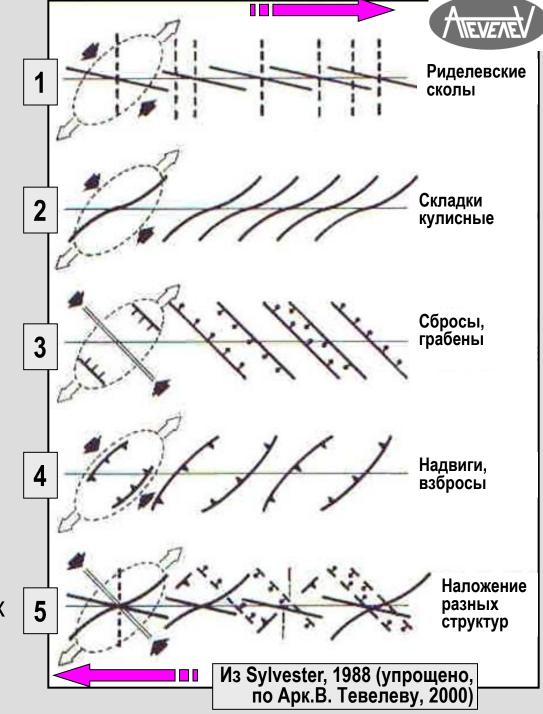
Направление сдвигания вдоль сколов R, P, Y то же самое, что и в разломе фундамента, а по R' — противоположное.


Все разломы, исключая надвиги, близки к вертикальным.

Сколы R и R' составляют с основной зоной смещения углы  $(\phi / 2)^{\circ}$  и  $(90 - \phi / 2)^{\circ}$  соответственно, где  $\phi$  – угол внутреннего трения.

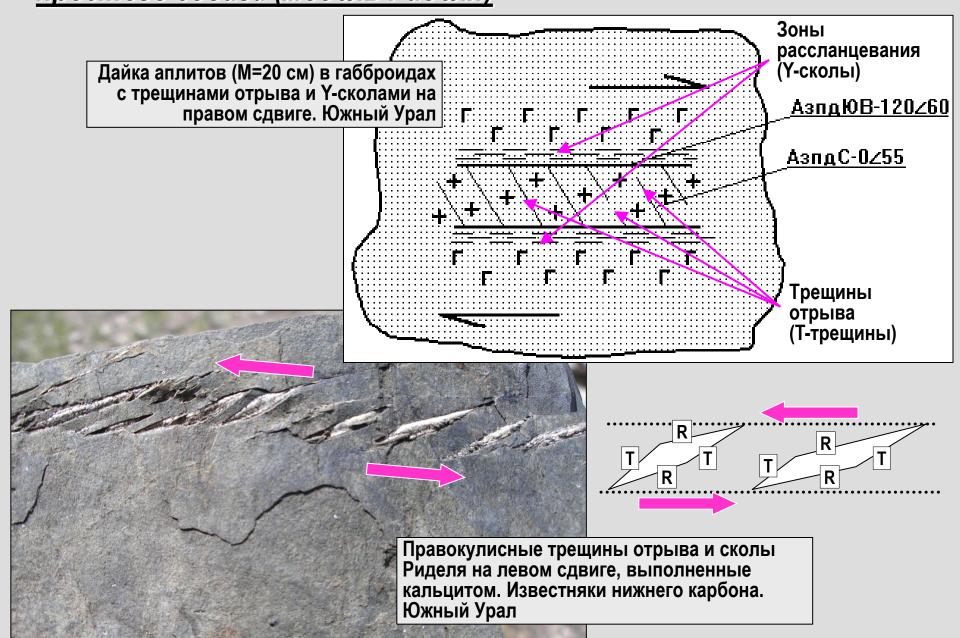
Это означает, что риделевские сколы ориентированы под углом от 15° до 20° к генеральному сдвигу, а R'— под углом от 60° до 75°.

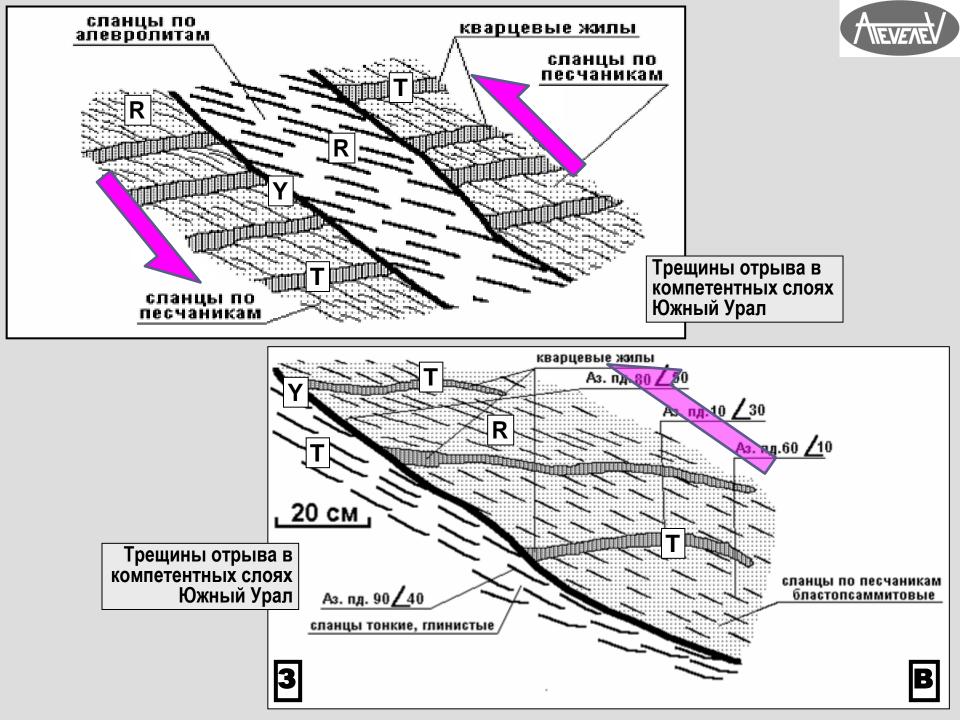
При развитии системы риделевских сколов возникают сложно построенные сдвиговые зоны, составленные разномасштабными линзовидными блоками.


В.Г. Талицкий, 1991 (цитируется по Арк.В. Тевелеву, 2005)



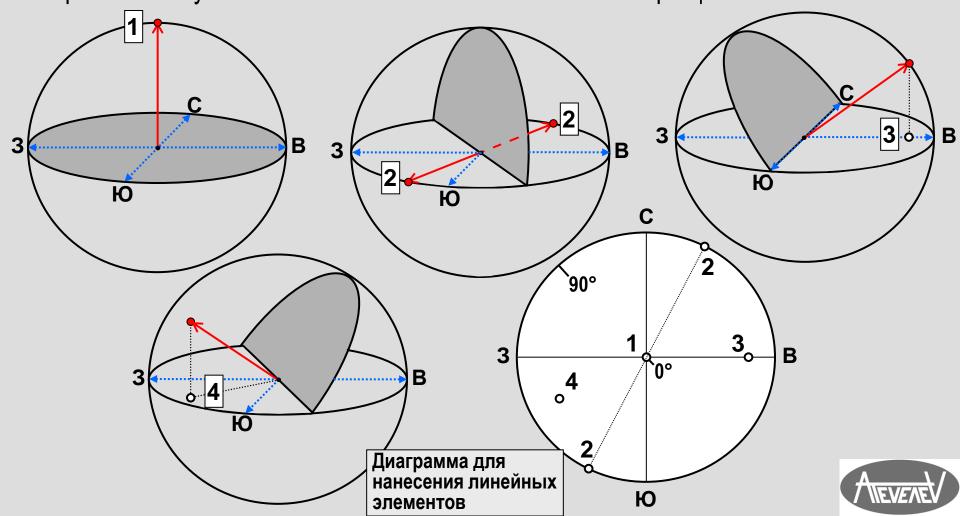
Набор структур, сформированных при **правом** простом сдвиге:

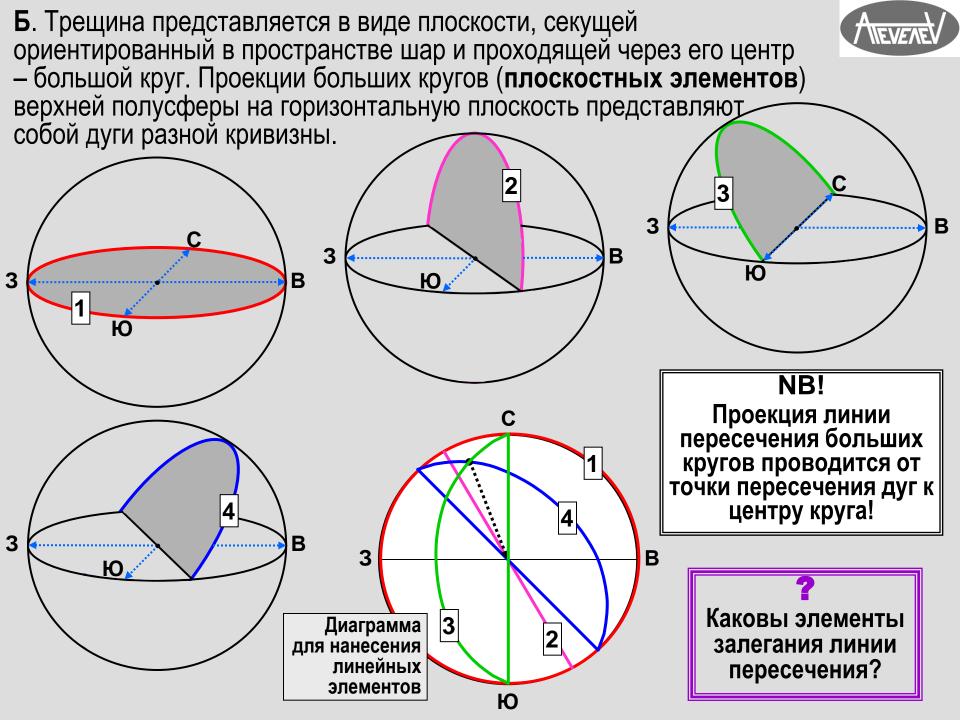

- 1 риделевские сколы (кулисы левосторонние);
- 2 складки кулисные (ориентированы нормально к оси сжатия, кулисы правосторонние);
- 3 сбросы, грабены (ориентированы нормально к оси растяжения);
- 4 надвиги, взбросы (ориентированы нормально к оси сжатия);
- **5** сочетание различных структурных элементов.


Таким образом, в условиях простого сдвига может формироваться серия сопряженных структур сжатия и растяжения.



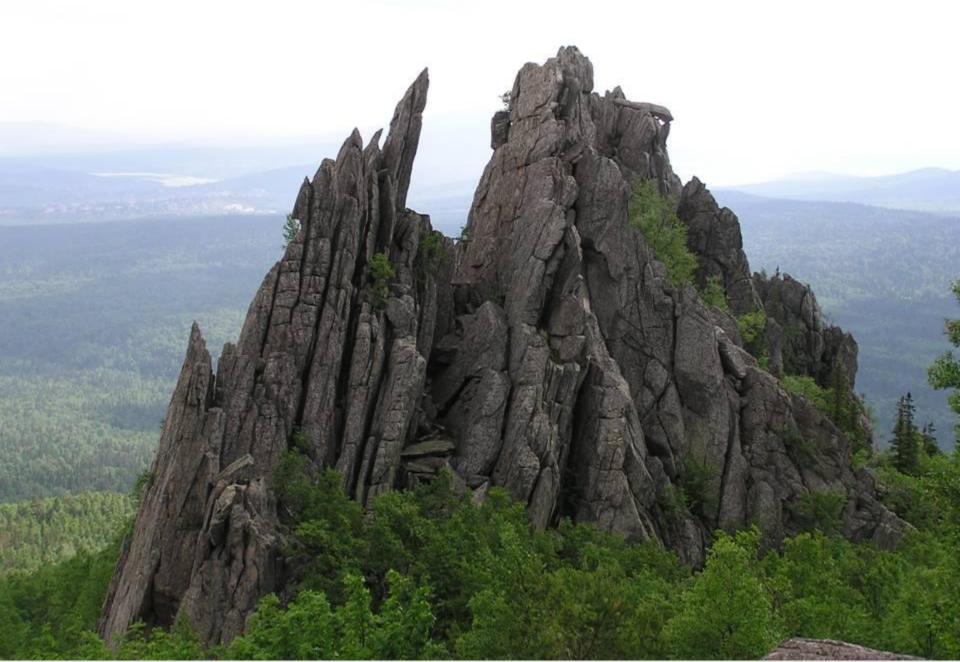
# <u>Примеры структур, сформированных в обстановке</u> простого сдвига (модель Риделя)



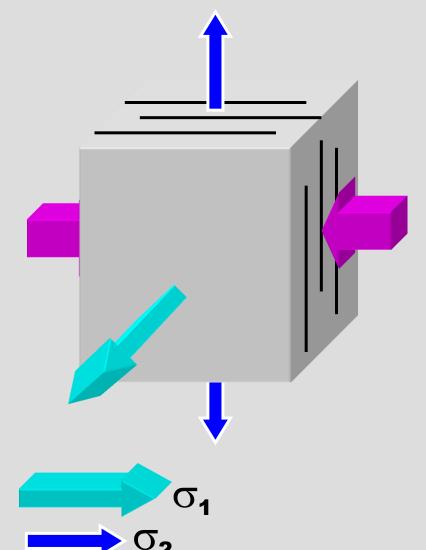






### Трещины на стереографической проекции


Для статистической обработки данных по замерам трещиноватости используют стереографические проекции элементов: **линейных** (**A**) или **плоскостных** (**Б**). **A**. Трещина представляется в виде плоскости, секущей ориентированный в пространстве шар и проходящей через его центр – большой круг. Проекции точек пересечения нормалей к трещинам (**линейных элементов**) с верхней полусферой на горизонтальную плоскость и есть элемент залегания трещины.





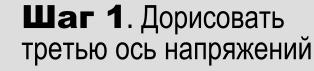

### Трещины – дело тонкое!





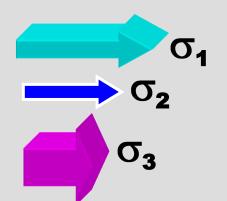





 $\sigma_3$ 

**Шаг 1.** Дорисовать третью ось напряжений

**Шаг 2.** Дорисовать трещины отрыва. Они ортогональны направлению растяжения  $(\sigma_1)$  и расположены в плоскости  $\sigma_3 - \sigma_2$ 


Дорисуйте трещины отрыва





**Шаг 2.** Дорисовать трещины скола. Линия их пересечения совпадает с направлением  $\sigma_2$ 

**Шаг 3.** Определить направления смещения блоков, которые совпадают с направлениями сжатия – растяжения. Нарисовать стрелки



Дорисуйте трещины скола, определите направления смещения по ним

 $\sigma_3$ 



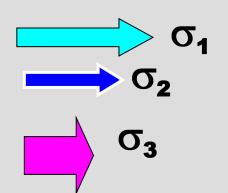


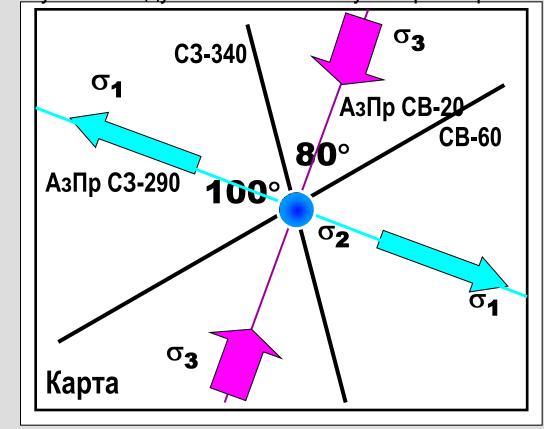
Дорисуйте трещины скола



### Вы наблюдаете две системы вертикальных сколов:

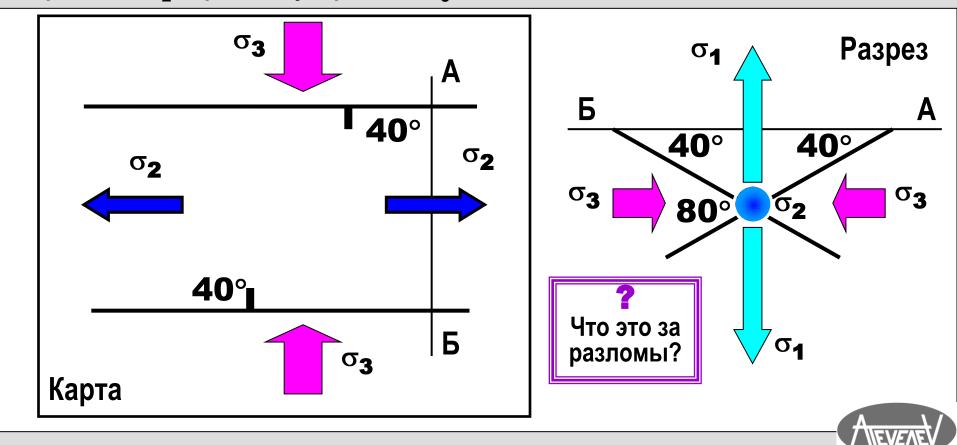
1) АзПр СВ-60; 2) АзПр СЗ-340.


Что можно сказать об ориентировке главных осей напряжений?


**Шаг 1**. Ось  $\sigma_2$  совпадает с линией пересечения сколов, т.е. – вертикальна и перпендикулярна плоскости  $\sigma_1 - \sigma_3$ .

**Шаг 2**. Определить острый и тупо<u>й углы между сколами и азимуты простирания</u>

биссектрис.


**Шаг 3**. Нарисовать оси напряжений  $\sigma_1$  и  $\sigma_3$ . Ось сжатия  $\sigma_3$  совпадает с биссектрисой острого угла, ось растяжения  $\sigma_1$  совпадает с биссектрисой тупого угла.

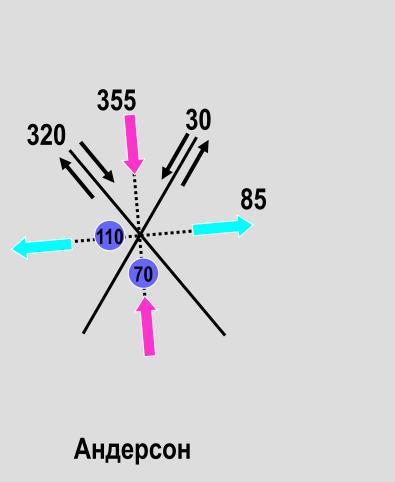


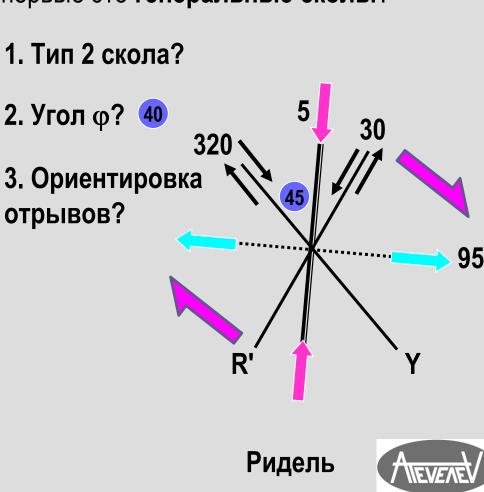


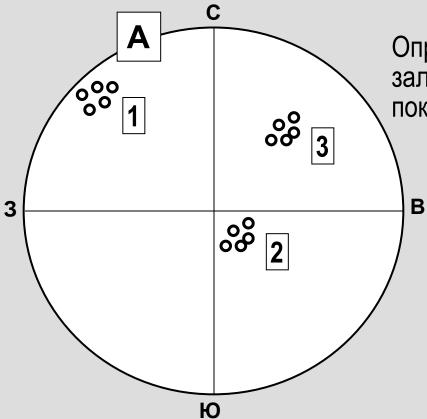
Вы наблюдаете две системы сколов: 1) АзПд Ю-180 ∠40 Финальный 2) АзПд С-0 ∠40. Какова ориентировка главных осей напряжений? тест 5

- **Шаг 1**. Поскольку нам нужна линия пересечения, надо построить разрез вкрест простирания трещин и определить острый угол.
- **Шаг 2**. Нарисовать оси напряжений  $\sigma_1$  и  $\sigma_3$ . Ось сжатия совпадает с биссектрисой острого угла, ось растяжения с биссектрисой тупого угла.
- **Шаг 3**. Нарисовать оси напряжений  $\sigma_2$  и  $\sigma_3$  на карте. Ось среднего главного напряжения  $\sigma_2$  перпендикулярна оси  $\sigma_3$ .




Вы наблюдаете две системы вертикальных трещин:

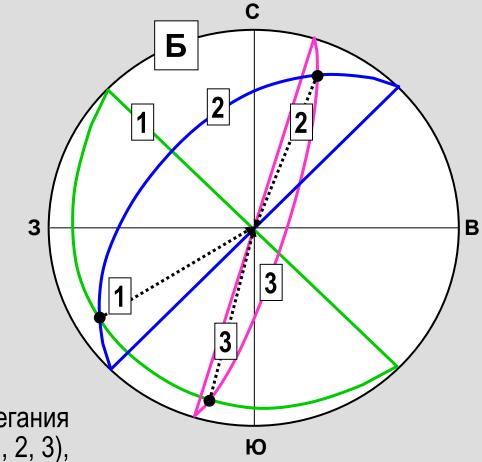

Финальный тест 6


- 1) сколы правые АзПр СЗ-320;
- 2) сколы левые АзПр СВ-30.

Как ориентированы главные оси напряжений, если интерпретировать эти сколы:

- а) в рамках модели Андерсона;
- б) в рамках модели Риделя, считая, что первые это генеральные сколы?








Определите примерные элементы залегания групп трещин (1, 2, 3), показанных точками на диаграмме **A** 

Определите примерные элементы залегания трещин (1, 2, 3), показанных дугами на диаграмме **Б**.

Определите примерные элементы залегания линий пересечения трещин (1, 2, 3), показанных стрелками на диаграмме **Б**.

