Все о геологии Геовикипедия 
wiki.web.ru 
   
 Все о геологии  Конференции: Календарь / Материалы  Каталог ссылок    Словарь       Форумы        В помощь студенту     Последние поступления
Статьяnstab-mainСтатья ОбсуждениеtalkОбсуждение  

Радиус ионный

Ионный радиус - величина в Å, характеризующая размер ионо-катионов и ионо-анионов; характерный размер шарообразных ионов, применяемый для вычисления межатомных расстояний в ионных соединениях. Понятие ионный радиус основано на предположении, что размеры ионов не зависят от состава молекул, в которые они входят. На него влияет количество электронных оболочек и плотность упаковки атомов и ионов в кристаллической решётке.

Размеры иона зависят от многих факторов. При постоянном заряде иона с ростом порядкового номера (а, следовательно, заряда ядра) ионный радиус уменьшается. Это особенно хорошо заметно в ряду лантаноидов, где ионные радиусы монотонно меняются от 117 пм для (La3+) до 100 пм (Lu3+) при координационном числе 6. Этот эффект носит название лантаноидного сжатия.

В группах элементов ионные радиусы в целом увеличиваются с ростом порядкового номера. Однако для d-элементов четвертого и пятого периодов вследствие лантаноидного сжатия может произойти даже уменьшение ионного радиуса (например, от 73 пм у Zr4+ до 72 пм у Hf4+ при координационном числе 4).

В периоде происходит заметно уменьшение ионного радиуса, связанное с усилением притяжения электронов к ядру при одновременном росте заряда ядра и заряда самого иона: 116 пм у Na+, 86 пм у Mg2+, 68 пм у Al3+ (координационное число 6). По этой же причине увеличение заряда иона приводит к уменьшению ионного радиуса для одного элемента: Fe2+ 77 пм, Fe3+ 63 пм, Fe6+ 39 пм (координационное число 4).

Сравнение ионных радиусов можно проводить только при одинаковом координационном числе, поскольку оно оказывает влияние на размер иона из-за сил отталкивания между противоионами. Это хорошо видно на примере иона Ag+; его ионных радиус равен 81, 114 и 129 пм для координационных чисел 2, 4 и 6, соответственно.
Структура идеального ионного соединения, обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов, во многом определяется соотношением ионных радиусов катионов и анионов. Это можно показать простыми геометрическими построениями.

Ионный радиус зависит от многих факторов, таких как заряд и размер ядра, количество электронов в электронной оболочке, её плотность, обусловленная кулоновским взаимодействием. С 1923 г. под этим понятием понимаются эффективные ионные радиусы. Гольдшмидтом, Аренсом, Бокием и др. созданы системы ионных радиусов, но все они качественно тождественны, а именно, катионы в них, как правило, намного меньше анионов (исключение Rb+, Cs+, Ba2+ и Ra2+ в отношении О2- и F-). За исходный радиус в большинстве систем принимался размер радиуса К+ = 1,33 Å, все остальные рассчитывались из межатомных расстояний в гетероатомных соединениях, считавшихся ионными по типу хим. связи. В 1965 г. в США (Waber, Grower) и в 1966 г. в СССР (Братцев) опубликованы результаты квантово-механических расчетов размеров ионов, показавшие, что катионы, действительно, имеют меньший размер, чем соответствующие атомы, а анионы практически не отличаются по размеру от соответствующих атомов. Этот результат согласуется с законами строения электронных оболочек и показывает ошибочность исходных положений, принятых при расчете эффективных ионных радиусов. Орбитальные ионные радиусы непригодны для оценки межатомных расстояний, последние рассчитываются на основе системы ионно-атомных радиусов.


Последнее изменение этой страницы: 21:38, 1 сентября 2013.
Rambler's Top100